The equation of a closed curve in two-dimensional polar coordinates is given by \( r = \frac{2}{\sqrt{\pi}} (1 - \sin \theta) \). The area enclosed by the curve is ___________ (answer in integer).
To find the area enclosed by the curve in polar coordinates, we use the formula for the area of a polar curve: \[ A = \frac{1}{2} \int_{\theta_1}^{\theta_2} r^2 \, d\theta \] Here, \( r = \frac{2}{\sqrt{\pi}} (1 - \sin \theta) \) and the curve is closed, so the limits of integration are from \( \theta = 0 \) to \( \theta = 2\pi \).
Step 1: First, square the function for \( r \): \[ r^2 = \left( \frac{2}{\sqrt{\pi}} (1 - \sin \theta) \right)^2 = \frac{4}{\pi} (1 - \sin \theta)^2 \] Now, substitute this into the area formula: \[ A = \frac{1}{2} \int_0^{2\pi} \frac{4}{\pi} (1 - \sin \theta)^2 \, d\theta \]
Step 2: Simplify the expression: \[ A = \frac{2}{\pi} \int_0^{2\pi} (1 - \sin \theta)^2 \, d\theta \] Expand the integrand: \[ (1 - \sin \theta)^2 = 1 - 2\sin \theta + \sin^2 \theta \] Thus, the integral becomes: \[ A = \frac{2}{\pi} \int_0^{2\pi} (1 - 2\sin \theta + \sin^2 \theta) \, d\theta \]
Step 3: Now, integrate term by term:
The integral of \( 1 \) from 0 to \( 2\pi \) is \( 2\pi \), The integral of \( -2\sin \theta \) from 0 to \( 2\pi \) is 0, The integral of \( \sin^2 \theta \) can be simplified using the identity \( \sin^2 \theta = \frac{1 - \cos(2\theta)}{2} \), and the integral of \( \frac{1 - \cos(2\theta)}{2} \) from 0 to \( 2\pi \) gives \( \pi \). Thus, the total integral is: \[ A = \frac{2}{\pi} \left( 2\pi + 0 + \pi \right) = \frac{2}{\pi} \times 3\pi = 6 \] Therefore, the area enclosed by the curve is: \[ \boxed{6} \]
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?
A regular dodecagon (12-sided regular polygon) is inscribed in a circle of radius \( r \) cm as shown in the figure. The side of the dodecagon is \( d \) cm. All the triangles (numbered 1 to 12 in the figure) are used to form squares of side \( r \) cm, and each numbered triangle is used only once to form a square. The number of squares that can be formed and the number of triangles required to form each square, respectively, are:
The number of patients per shift (X) consulting Dr. Gita in her past 100 shifts is shown in the figure. If the amount she earns is ₹1000(X - 0.2), what is the average amount (in ₹) she has earned per shift in the past 100 shifts?
For a three-bar truss loaded as shown in the figure, the magnitude of the force in the horizontal member AB is ____________ N (answer in integer).
A 4 × 4 digital image has pixel intensities (U) as shown in the figure. The number of pixels with \( U \leq 4 \) is: