Given Data:
RD1 = 1.5 kΩ, RL = 2.5 kΩ, V = 15 V, VD1 = 0.3 V, VD2 = 0.7 V.
The voltage across the resistive portion of the circuit can be found by subtracting the voltage drops across the two diodes from the applied voltage:
Vresistive = V - (VD1 + VD2).
Substituting the values:
Vresistive = 15 V - (0.3 V + 0.7 V) = 14 V.
The total resistance in the resistive portion of the circuit is the sum of RD1 and RL:
Rtotal = RD1 + RL = 1.5 kΩ + 2.5 kΩ = 4.0 kΩ.
Using Ohm’s Law, the total current i in the circuit is given by:
i = \(\frac{V_{resistive}}{R_{total}}\).
Substituting the values:
i = \(\frac{14 \text{ V}}{4.0 \text{ k}\Omega}\) = \(\frac{14}{4000}\) A = 0.0035 A = 3.5 mA.
The voltage across the load resistance RL, denoted as VL, is given by Ohm’s Law:
VL = i × RL.
Substituting the values:
VL = 3.5 mA × 2.5 kΩ = 0.0035 A × 2500 Ω = 8.75 V.
Final Result: The voltage across the load resistance RL is:
VL = 8.75 V
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process.
In the light of the above statements, choose the correct answer from the options given below:
If \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] and
and \( f(0) = \frac{5}{4} \), then the value of \[ 12 \left( y \left( \frac{\pi}{4} \right) - \frac{1}{e^2} \right) \] equals to: