
To determine the terminal potential difference of the cell in the given circuit, let's analyze the components and apply the necessary formulas.
Therefore, the terminal potential difference of the cell is 2 V.
The circuit has a 3 V cell connected to resistances of \(1 \, \Omega\), \(4 \, \Omega\), and \(4 \, \Omega\). The total resistance \(R_{\text{total}}\) of the circuit is calculated as:
\[ R_{\text{total}} = R_{\text{internal}} + R_{\text{external}} \]
The external resistance is a parallel combination of \(4 \, \Omega\) and \(4 \, \Omega\):
\[ R_{\text{parallel}} = \frac{1}{4} + \frac{1}{4} = 2 \, \Omega. \]
Thus, the total resistance becomes:
\[ R_{\text{total}} = 1 \, \Omega + 2 \, \Omega = 3 \, \Omega. \]
The current in the circuit is:
\[ i = \frac{\text{EMF}}{R_{\text{total}}} = \frac{3 \, \text{V}}{3 \, \Omega} = 1 \, \text{A}. \]
The terminal potential difference \(V_{\text{terminal}}\) is given by:
\[ V_{\text{terminal}} = \text{EMF} - i R_{\text{internal}} = 3 \, \text{V} - (1 \, \text{A} \cdot 1 \, \Omega) = 2 \, \text{V}. \]
Final Answer: 2 V
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
A Wheatstone bridge is initially at room temperature and all arms of the bridge have same value of resistances \[ (R_1=R_2=R_3=R_4). \] When \(R_3\) resistance is heated, its resistance value increases by \(10%\). The potential difference \((V_a-V_b)\) after \(R_3\) is heated is _______ V. 
The heat generated in 1 minute between points A and B in the given circuit, when a battery of 9 V with internal resistance of 1 \(\Omega\) is connected across these points is ______ J. 
The following diagram shows a Zener diode as a voltage regulator. The Zener diode is rated at \(V_z = 5\) V and the desired current in load is 5 mA. The unregulated voltage source can supply up to 25 V. Considering the Zener diode can withstand four times of the load current, the value of resistor \(R_s\) (shown in circuit) should be_______ \(\Omega\).
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 