
To determine the terminal potential difference of the cell in the given circuit, let's analyze the components and apply the necessary formulas.
Therefore, the terminal potential difference of the cell is 2 V.
The circuit has a 3 V cell connected to resistances of \(1 \, \Omega\), \(4 \, \Omega\), and \(4 \, \Omega\). The total resistance \(R_{\text{total}}\) of the circuit is calculated as:
\[ R_{\text{total}} = R_{\text{internal}} + R_{\text{external}} \]
The external resistance is a parallel combination of \(4 \, \Omega\) and \(4 \, \Omega\):
\[ R_{\text{parallel}} = \frac{1}{4} + \frac{1}{4} = 2 \, \Omega. \]
Thus, the total resistance becomes:
\[ R_{\text{total}} = 1 \, \Omega + 2 \, \Omega = 3 \, \Omega. \]
The current in the circuit is:
\[ i = \frac{\text{EMF}}{R_{\text{total}}} = \frac{3 \, \text{V}}{3 \, \Omega} = 1 \, \text{A}. \]
The terminal potential difference \(V_{\text{terminal}}\) is given by:
\[ V_{\text{terminal}} = \text{EMF} - i R_{\text{internal}} = 3 \, \text{V} - (1 \, \text{A} \cdot 1 \, \Omega) = 2 \, \text{V}. \]
Final Answer: 2 V

Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals: