
To determine the terminal potential difference of the cell in the given circuit, let's analyze the components and apply the necessary formulas.
Therefore, the terminal potential difference of the cell is 2 V.
The circuit has a 3 V cell connected to resistances of \(1 \, \Omega\), \(4 \, \Omega\), and \(4 \, \Omega\). The total resistance \(R_{\text{total}}\) of the circuit is calculated as:
\[ R_{\text{total}} = R_{\text{internal}} + R_{\text{external}} \]
The external resistance is a parallel combination of \(4 \, \Omega\) and \(4 \, \Omega\):
\[ R_{\text{parallel}} = \frac{1}{4} + \frac{1}{4} = 2 \, \Omega. \]
Thus, the total resistance becomes:
\[ R_{\text{total}} = 1 \, \Omega + 2 \, \Omega = 3 \, \Omega. \]
The current in the circuit is:
\[ i = \frac{\text{EMF}}{R_{\text{total}}} = \frac{3 \, \text{V}}{3 \, \Omega} = 1 \, \text{A}. \]
The terminal potential difference \(V_{\text{terminal}}\) is given by:
\[ V_{\text{terminal}} = \text{EMF} - i R_{\text{internal}} = 3 \, \text{V} - (1 \, \text{A} \cdot 1 \, \Omega) = 2 \, \text{V}. \]
Final Answer: 2 V
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process. \text{In the light of the above statements, choose the correct answer from the options given below:}
In the figure shown below, a resistance of 150.4 $ \Omega $ is connected in series to an ammeter A of resistance 240 $ \Omega $. A shunt resistance of 10 $ \Omega $ is connected in parallel with the ammeter. The reading of the ammeter is ______ mA.

Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
