In the given circuit \(C_1 = 2μF, C_2 = 0.2μF, C_3 = 2μF, C_4 = 4μF, C_5 = 2μF, C_6 = 2μF\). The charge stored on capacitor \(C_4\) is _____ \(μC\)
The total equivalent capacitance (\( C_{\text{eq}} \)) of the circuit is given as:
\[ C_{\text{eq}} = 0.5 \, \mu\text{F}. \]
The total charge stored in the circuit can be calculated using the formula:
\[ Q = C_{\text{eq}} \cdot V, \]
where:
Substitute the values:
\[ Q = 0.5 \cdot 10 = 5 \, \mu\text{C}. \]
The charge on a specific branch of the circuit is calculated using the charge division formula. For the given branch:
\[ Q' = Q \cdot \frac{C_2}{C_2 + C_6}. \]
Substitute the values:
\[ Q' = 5 \cdot \frac{0.8}{0.8 + 0.2}. \]
Simplify:
\[ Q' = 5 \cdot \frac{0.8}{1} = 5 \cdot 0.8 = 4 \, \mu\text{C}. \]

Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.