In the given circuit \(C_1 = 2μF, C_2 = 0.2μF, C_3 = 2μF, C_4 = 4μF, C_5 = 2μF, C_6 = 2μF\). The charge stored on capacitor \(C_4\) is _____ \(μC\)
The total equivalent capacitance (\( C_{\text{eq}} \)) of the circuit is given as:
\[ C_{\text{eq}} = 0.5 \, \mu\text{F}. \]
The total charge stored in the circuit can be calculated using the formula:
\[ Q = C_{\text{eq}} \cdot V, \]
where:
Substitute the values:
\[ Q = 0.5 \cdot 10 = 5 \, \mu\text{C}. \]
The charge on a specific branch of the circuit is calculated using the charge division formula. For the given branch:
\[ Q' = Q \cdot \frac{C_2}{C_2 + C_6}. \]
Substitute the values:
\[ Q' = 5 \cdot \frac{0.8}{0.8 + 0.2}. \]
Simplify:
\[ Q' = 5 \cdot \frac{0.8}{1} = 5 \cdot 0.8 = 4 \, \mu\text{C}. \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: