Let the side of equilateral triangle \(ABC = 2\) units
Then:
- Height of triangle = \(\frac{\sqrt{3}}{2} \cdot 2 = \sqrt{3}\)
- Area \(S = \frac{\sqrt{3}}{4} \cdot (2)^2 = \sqrt{3}\)
Let’s place triangle on coordinate plane:
- \(B = (0, 0)\)
- \(C = (2, 0)\)
- \(A = (1, \sqrt{3})\)
- \(M =\) midpoint of \(BC = (1, 0)\)
Now vector \(AM = (0, \sqrt{3} - 0) = (0, \sqrt{3})\)
So extending \(MP = BM = 1\) unit along same direction ⇒
\[
\text{Direction of } AM = \text{from } A(1, \sqrt{3}) \text{ to } M(1, 0)
\Rightarrow \text{Vector AM} = (0, -\sqrt{3})
\]
Unit vector = \((0, -1)\)
So \(P = M + \text{unit vector} \cdot 1 = (1, 0) + (0, -1) = (1, -1)\)
So \(AP\) = from \(A(1, \sqrt{3})\) to \(P(1, -1)\)
Center of semicircle is midpoint of \(AP = (1, (\sqrt{3} - 1)/2)\)
Radius = half of length \(AP\)
Length \(AP = \sqrt{(1 - 1)^2 + (\sqrt{3} + 1)^2} = \sqrt{(\sqrt{3} + 1)^2} = \sqrt{3} + 1\)
So radius = \((\sqrt{3} + 1)/2\)
Equation of semicircle with diameter \(AP\) intersects extended \(CB\), which lies along x-axis.
So line \(CB\) → \(y = 0\)
Intersection point \(Q\) lies on x-axis and on circle ⇒ plug into semicircle equation and solve.
But finally we are told that:
- Side of square = \(MQ\)
- Area of square = \(T = (MQ)^2\)
We are to find \(T\) in terms of \(S = \sqrt{3}\)
From geometry, coordinates:
- \(M = (1, 0)\)
- \(Q = (0, 1)\)
Then:
\[
MQ = \sqrt{(1 - 0)^2 + (0 - 1)^2} = \sqrt{1 + 1} = \sqrt{2}
\Rightarrow T = (\sqrt{2})^2 = 2
\]
And \(S = \sqrt{3}\)
So:
\[
\boxed{T = \sqrt{2}S}
\Rightarrow \boxed{\text{Option (a)}}
\]
% Final Answer
\[
\boxed{T = \sqrt{2}S}
\]