\(\frac{^nC_4 (2^\frac{1}{4})^{n-4}(3^{\frac{-1}{4}})^4}{^nC_4 (2^\frac{-1}{4})^{n-4}(3^{\frac{1}{4}})^4}\) = \(\sqrt 6\)
\((\frac{2^\frac{1}{4}}{3^\frac{-1}{4}})^{(n-8)}\) = \(\sqrt 6\)
\((6)^\frac{n-8}{4}\) = \(\sqrt 6\)
\(n-8=2\)
\(n=10\)
\(T_3 = {^{10}}C_2(2^{\frac{1}{4}})^8 (3^\frac{-1}{4})^2\)
\(= {^{10}}C_2\times(\sqrt2)^4\times\frac{1}{\sqrt3} = 60\sqrt3\)
So, the correct answer is (B): \(60\sqrt 3\)
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is
