In the circuit shown below, the AND gate has a propagation delay of 1 ns. The edge-triggered flip-flops have a set-up time of 2 ns, a hold-time of 0 ns, and a clock-to-Q delay of 2 ns. The maximum clock frequency (in MHz, rounded off to the nearest integer) such that there are no setup violations is (answer in MHz).
To calculate the maximum clock frequency without any setup violations, we must ensure that the total delay time for each flip-flop does not exceed the clock period.
The total delay for the signal is the sum of:
1. The propagation delay of the AND gate (\( t_{prop} \)) = 1 ns
2. The setup time of the flip-flop (\( t_{setup} \)) = 2 ns
3. The clock-to-Q delay of the flip-flop (\( t_{CQ} \)) = 2 ns
Thus, the total delay (\( t_{total} \)) is: \[ t_{total} = t_{prop} + t_{setup} + t_{CQ} = 1 \, {ns} + 2 \, {ns} + 2 \, {ns} = 5 \, {ns} \] The clock period \( T \) must be greater than or equal to the total delay: \[ T \geq t_{total} = 5 \, {ns} \] The maximum clock frequency (\( f_{max} \)) is the reciprocal of the clock period: \[ f_{max} = \frac{1}{T} = \frac{1}{5 \times 10^{-9}} = 200 \, {MHz} \] Thus, the maximum clock frequency is 200 MHz.
A 50 \(\Omega\) lossless transmission line is terminated with a load \( Z_L = (50 - j75) \, \Omega.\) { If the average incident power on the line is 10 mW, then the average power delivered to the load
(in mW, rounded off to one decimal place) is} _________.
In a 4-bit ripple counter, if the period of the waveform at the last flip-flop is 64 microseconds, then the frequency of the ripple counter in kHz is ___________. (Answer in integer)
Two resistors are connected in a circuit loop of area 5 m\(^2\), as shown in the figure below. The circuit loop is placed on the \( x-y \) plane. When a time-varying magnetic flux, with flux-density \( B(t) = 0.5t \) (in Tesla), is applied along the positive \( z \)-axis, the magnitude of current \( I \) (in Amperes, rounded off to two decimal places) in the loop is (answer in Amperes).
The diode in the circuit shown below is ideal. The input voltage (in Volts) is given by \[ V_I = 10 \sin(100\pi t), \quad {where time} \, t \, {is in seconds.} \] The time duration (in ms, rounded off to two decimal places) for which the diode is forward biased during one period of the input is (answer in ms).
Two fair dice (with faces labeled 1, 2, 3, 4, 5, and 6) are rolled. Let the random variable \( X \) denote the sum of the outcomes obtained. The expectation of \( X \) is _________ (rounded off to two decimal places).