Step 1: Ozonolysis (formation of compound A):} The double bond in the cycloalkene undergoes ozonolysis in the presence of ozone (\( \text{O}_3 \)) followed by reduction with Zn/\( \text{H}_2\text{O} \). This cleaves the double bond, producing two aldehyde groups on adjacent carbons. 2.
Step 2: Haloform reaction (formation of compound B): The aldehyde (or ketone) group in compound A reacts with \( \text{NaOH}_{(\text{alc})} \) and \( \text{I}_2 \) (haloform reaction). This cleaves the terminal methyl ketone or aldehyde group to produce sodium formate (\( \text{HCOONa} \)) and iodoform (\( \text{CHI}_3 \)), leaving a carboxylic acid group. The final product, compound B, contains a carboxylate ion (\( \text{COO}^- \)) and a secondary alcohol group. The complete reaction mechanism ensures the correct conversion of "A" to "B."
Chlorobenzene to biphenyl
Match the LIST-I with LIST-II
Choose the correct answer from the options given below:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: