ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.14). Show that
(i) ∠A = ∠B
(ii) ∠C = ∠D
(iii) ∆ABC ≅ ∠∆BAD
(iv) diagonal AC = diagonal BD [Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]
Let us extend AB. Then, draw a line through C, which is parallel to AD, intersecting AE at point E. It is clear that AECD is a parallelogram.
(i) AD = CE (Opposite sides of parallelogram AECD)
However, AD = BC (Given)
Therefore, BC = CE
∠CEB = ∠CBE (Angle opposite to equal sides are also equal)
Consider parallel lines AD and CE. AE is the transversal line for them.
∠A + ∠CEB = 180º (Angles on the same side of transversal)
∠A +∠CBE = 180º (Using the relation ∠CEB = ∠CBE) ... (1)
However, ∠B + ∠CBE = 180º (Linear pair angles) ... (2)
From equations (1) and (2), we obtain
∠A = ∠B
(ii) AB || CD
∠A + ∠D = 180º (Angles on the same side of the transversal)
Also, ∠C + ∠B = 180° (Angles on the same side of the transversal)
∠A +∠ D =∠ C + ∠B
However, ∠A = ∠B [Using the result obtained in (i)]
∠C = ∠D
(iii) In ∆ABC and ∆BAD,
AB = BA (Common side)
BC = AD (Given)
∠B = ∠A (Proved before)
∠∆ABC ∆∠BAD (SAS congruence rule)
(iv) We had observed that, ∠∆ABC ∠∆BAD
∠AC = BD (By CPCT)
In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see Fig. 8.12). Show that:
(i) ∆APD ≅ ∆CQB
(ii) AP = CQ
(iii) ∆AQB ≅∆CPD
(iv) AQ = CP
(v) APCQ is a parallelogram
In Fig. 9.26, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠ BEC = 130° and ∠ ECD = 20°. Find ∠ BAC.
Look up the dictionary entries for the words sympathy, familiarity, comfort, care, and surprise. Use the information given in the dictionary and complete the table.
Noun, Adjective, Adverb, Verb, Meaning:
sympathy
familiarity
comfort
care
surprise