In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
(a) z=2 (b) x+y+z=1
(c)2x+3y-z=5 (d) 5y+8=0
(a) The equation of the plane is z=2 or 0x+0y+z=2...(1)
The direction ratios of the normal are 0, 0, and 1.
∴\(\sqrt {0^2+0^2+1^2}=1\)
Dividing both sides of equation(1) by 1, we obtain
0.x+0.y+1.z=2
This is of the form lx+my+nz=d, where l, m, n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.
Therefore, the direction cosines are 0, 0, and 1 and the distance of the plane from the origin is 2 units.
(b) x+y+z=1...(1)
The direction ratios of normal are 1, 1, and 1.
∴\(\sqrt {(1)^2+(1)^2+(1)^2}=\sqrt 3\)
Dividing both sides of equation(1) by \(\sqrt 3\), we obtain
\(\frac{1}{\sqrt 3}x+\frac{1}{\sqrt 3}y+\frac{1}{\sqrt 3}z=\frac{1}{\sqrt 3}\) ...(2)
This equation is the form lx+my+nz=d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.
Therefore, the direction cosines of the normal are \(\frac{1}{\sqrt 3},\frac{1}{\sqrt 3}\), and \(\frac{1}{\sqrt 3}\) and the distance of normal from the origin is \(\frac{1}{\sqrt 3}\) units.
(c) 2x+3y-z=5...(1)
The direction ratios of normal are 2, 3, and -1.
∴\(\sqrt{(2)^2+(3)^2+(-1)^2}=\sqrt 14\)
Dividing both sides of equation(1) by 14, we obtain
\(\frac{2}{\sqrt {14}}x+\frac{3}{\sqrt{14}}y-\frac{1}{\sqrt {14}}z=\frac{5}{\sqrt {14}}\)
This equation is of the form lx+my+nz=d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.
Therefore, the direction cosines of the normal to the plane are \(\frac{2}{\sqrt {14}},\frac{3}{\sqrt {14}}\), and \(\frac{-1}{\sqrt{14}}\) and the distance of normal from the origin is \(\frac{5}{\sqrt{14}}\) units.
(d) 5y+8=0
\(\Rightarrow \) 0x-5y+0z=8...(1)
The direction ratios of normal are 0, -5, and 0.
∴\(\sqrt{0+(-5)^2+0}\) =5
Dividing both sides of equation(1) by 5, we obtain
-y=\(\frac{8}{5}\)
This equation is of the form lx+my+nz=d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.
Therefore, the direction cosines of the normal to the plane are 0, -1, and 0 and the distance of normal from the origin is \(\frac{8}{5}\) units.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
Rupal, Shanu and Trisha were partners in a firm sharing profits and losses in the ratio of 4:3:1. Their Balance Sheet as at 31st March, 2024 was as follows:
(i) Trisha's share of profit was entirely taken by Shanu.
(ii) Fixed assets were found to be undervalued by Rs 2,40,000.
(iii) Stock was revalued at Rs 2,00,000.
(iv) Goodwill of the firm was valued at Rs 8,00,000 on Trisha's retirement.
(v) The total capital of the new firm was fixed at Rs 16,00,000 which was adjusted according to the new profit sharing ratio of the partners. For this necessary cash was paid off or brought in by the partners as the case may be.
Prepare Revaluation Account and Partners' Capital Accounts.
A surface comprising all the straight lines that join any two points lying on it is called a plane in geometry. A plane is defined through any of the following uniquely: