In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
(a) z=2 (b) x+y+z=1
(c)2x+3y-z=5 (d) 5y+8=0
(a) The equation of the plane is z=2 or 0x+0y+z=2...(1)
The direction ratios of the normal are 0, 0, and 1.
∴\(\sqrt {0^2+0^2+1^2}=1\)
Dividing both sides of equation(1) by 1, we obtain
0.x+0.y+1.z=2
This is of the form lx+my+nz=d, where l, m, n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.
Therefore, the direction cosines are 0, 0, and 1 and the distance of the plane from the origin is 2 units.
(b) x+y+z=1...(1)
The direction ratios of normal are 1, 1, and 1.
∴\(\sqrt {(1)^2+(1)^2+(1)^2}=\sqrt 3\)
Dividing both sides of equation(1) by \(\sqrt 3\), we obtain
\(\frac{1}{\sqrt 3}x+\frac{1}{\sqrt 3}y+\frac{1}{\sqrt 3}z=\frac{1}{\sqrt 3}\) ...(2)
This equation is the form lx+my+nz=d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.
Therefore, the direction cosines of the normal are \(\frac{1}{\sqrt 3},\frac{1}{\sqrt 3}\), and \(\frac{1}{\sqrt 3}\) and the distance of normal from the origin is \(\frac{1}{\sqrt 3}\) units.
(c) 2x+3y-z=5...(1)
The direction ratios of normal are 2, 3, and -1.
∴\(\sqrt{(2)^2+(3)^2+(-1)^2}=\sqrt 14\)
Dividing both sides of equation(1) by 14, we obtain
\(\frac{2}{\sqrt {14}}x+\frac{3}{\sqrt{14}}y-\frac{1}{\sqrt {14}}z=\frac{5}{\sqrt {14}}\)
This equation is of the form lx+my+nz=d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.
Therefore, the direction cosines of the normal to the plane are \(\frac{2}{\sqrt {14}},\frac{3}{\sqrt {14}}\), and \(\frac{-1}{\sqrt{14}}\) and the distance of normal from the origin is \(\frac{5}{\sqrt{14}}\) units.
(d) 5y+8=0
\(\Rightarrow \) 0x-5y+0z=8...(1)
The direction ratios of normal are 0, -5, and 0.
∴\(\sqrt{0+(-5)^2+0}\) =5
Dividing both sides of equation(1) by 5, we obtain
-y=\(\frac{8}{5}\)
This equation is of the form lx+my+nz=d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.
Therefore, the direction cosines of the normal to the plane are 0, -1, and 0 and the distance of normal from the origin is \(\frac{8}{5}\) units.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
Read the following text carefully:
Union Food and Consumer Affairs Minister said that the Central Government has taken many proactive steps in the past few years to control retail prices of food items. He said that the government aims to keep inflation under control without compromising the country’s economic growth. Retail inflation inched up to a three-month high of 5.55% in November 2023 driven by higher food prices. Inflation has been declining since August 2023, when it touched 6.83%. 140 new price monitoring centres had been set up by the Central Government to keep a close watch on wholesale and retail prices of essential commodities. The Government has banned the export of many food items like wheat, broken rice, non-basmati white rice, onions etc. It has also reduced import duties on edible oils and pulses to boost domestic supply and control price rise. On the basis of the given text and common understanding,
answer the following questions:
A surface comprising all the straight lines that join any two points lying on it is called a plane in geometry. A plane is defined through any of the following uniquely: