Lens Formula and Derivative for Error Analysis:
The lens formula is given by:
\[ \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \]
Taking the derivative of both sides with respect to \(u\) and \(v\), we get:
\[ -\frac{df}{f^2} = -\frac{dv}{v^2} + \frac{du}{u^2} \]
Rearranging for \(df\):
\[ df = f^2 \left( \frac{dv}{v^2} + \frac{du}{u^2} \right) \]
Error in Measurement of Focal Length:
Since \(dv\) and \(du\) represent the measurement errors in \(v\) and \(u\),
respectively, we can substitute \(dv = \Delta v\) and \(du = \Delta u\):
\[ \Delta f = f^2 \left[ \frac{\Delta v}{v^2} + \frac{\Delta u}{u^2} \right] \]
Conclusion:
The error in the measurement of the focal length \(f\) is:
\[ \Delta f = f^2 \left[ \frac{\Delta u}{u^2} + \frac{\Delta v}{v^2} \right] \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: