Lens Formula and Derivative for Error Analysis:
The lens formula is given by:
\[ \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \]
Taking the derivative of both sides with respect to \(u\) and \(v\), we get:
\[ -\frac{df}{f^2} = -\frac{dv}{v^2} + \frac{du}{u^2} \]
Rearranging for \(df\):
\[ df = f^2 \left( \frac{dv}{v^2} + \frac{du}{u^2} \right) \]
Error in Measurement of Focal Length:
Since \(dv\) and \(du\) represent the measurement errors in \(v\) and \(u\),
respectively, we can substitute \(dv = \Delta v\) and \(du = \Delta u\):
\[ \Delta f = f^2 \left[ \frac{\Delta v}{v^2} + \frac{\Delta u}{u^2} \right] \]
Conclusion:
The error in the measurement of the focal length \(f\) is:
\[ \Delta f = f^2 \left[ \frac{\Delta u}{u^2} + \frac{\Delta v}{v^2} \right] \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.