In this case, the circuit contains resistance \( R \), inductance \( L \), and capacitance \( C \), connected in series with an AC voltage source.
The phase difference \( \phi \) between the voltage and the current is influenced by the presence of the inductor and capacitor.
The phase difference in an RLC circuit is given by the formula: \[ \tan(\phi) = \frac{X_L - X_C}{R} \] where:
- \( X_L = \omega L \) is the inductive reactance,
- \( X_C = \frac{1}{\omega C} \) is the capacitive reactance,
- \( \omega = 2\pi f \) is the angular frequency of the AC voltage source. When the inductor \( L \) is removed, the phase difference becomes: \[ \tan\left(\frac{\pi}{3}\right) = \frac{-X_C}{R} \] When the capacitor \( C \) is removed, the phase difference becomes: \[ \tan\left(\frac{\pi}{3}\right) = \frac{X_L}{R} \] This implies that both reactances, inductive and capacitive, are equal, and the circuit behaves as a purely resistive circuit when either component is removed.
Thus, the power factor \( \text{PF} \) of the circuit is: \[ \text{PF} = \cos(\phi) = \cos(0) = 1 \] Therefore, the correct answer is: \[ \text{(3) } 1 \]
Assuming in forward bias condition there is a voltage drop of \(0.7\) V across a silicon diode, the current through diode \(D_1\) in the circuit shown is ________ mA. (Assume all diodes in the given circuit are identical) 


For the given logic gate circuit, which of the following is the correct truth table ? 
200 ml of an aqueous solution contains 3.6 g of Glucose and 1.2 g of Urea maintained at a temperature equal to 27$^{\circ}$C. What is the Osmotic pressure of the solution in atmosphere units?
Given Data R = 0.082 L atm K$^{-1}$ mol$^{-1}$
Molecular Formula: Glucose = C$_6$H$_{12}$O$_6$, Urea = NH$_2$CONH$_2$