(i) Given that, \(a = 5\), \(d = 3\), \(a_n = 50\)
As \(a_n = a + (n − 1)d\),
\(∴ 50 = 5 + (n − 1)3\)
\(45 = (n − 1)3\)
\(15 = n − 1\)
\(n = 16\)
\(S_n =\frac n2[a + a_n]\)
\(S_{16} = \frac {16}{2}[5 + 50]\)
\(S_{16} = 8 \times 55\)
\(S_{16} = 440\)
(ii) Given that, \(a = 7\), \(a_{13} = 35\)
As, \(a_n = a + (n − 1) d\)
\(∴ a_{13} = a + (13 − 1) d\)
\(35 = 7 + 12 d\)
\(35 − 7 = 12d\)
\(28 = 12d\)
\(d = \frac {28}{12}\)
\(d = \frac 73\)
\(S_n = \frac n2[a + a_n]\)
\(S_{13} =\frac n2[a + a_{13}]\)
\(S_{13}= \frac {13}{2}[7 + 35]\)
\(S_{13} = \frac {13 \times 42}{2}\)
\(S_{13} = 13 \times 21\)
\(S_{13} = 273\)
(iii) Given that, \(a_{12} = 37\), \(d = 3\)
As \(a_n = a + (n − 1)d\)
\(a_{12}= a + (12 − 1)3\)
\(37 = a + 33\)
\(a = 4\)
\(S_n = \frac n2[a + a_n]\)
\(S_{12} = \frac {12}{2}[4 + 37]\)
\(S_{12}= 6 \times 41\)
\(S_{12} = 246\)
(iv) Given that, \(a_3 = 15\), \(S_{10} = 125\)
As, \(a_n = a + (n − 1)d\)
\(a_3 = a + (3 − 1)\)
\(15 = a + 2d\) ……….(i)
\(S_n = \frac {n}{2}[2a + (n-1)d]\)
\(S_{10} = \frac {10}{2}[2a + (10-1)d]\)
\(125 = 5[2a + 9d]\)
\(25 = 2a + 9d\) ……….(ii)
On multiplying equation (i) by 2, we obtain
\(30 = 2a + 4d\) ………..(iii)
On subtracting equation (iii) from (ii), we obtain
\(−5 = 5d\)
\(d = −1\)
From equation (i),
\(15 = a + 2(−1)\)
\(15 = a − 2\)
\(a = 17\)
\(a_{10} = a + (10 − 1)d\)
\(a_{10}= 17 + (9) (−1)\)
\(a_{10} = 17 − 9 = 8\)
(v) Given that, \(d = 5\), \(S_9 = 75\)
As, \(S_n = \frac {n}{2}[2a + (n-1)d]\)
\(S_9 =\frac 92[2a + (9-1)5]\)
\(75 = \frac 92(2a + 40)\)
\(25 = 3(a + 20)\)
\(25 = 3a + 60\)
\(3a = 25 − 60\)
\(a = -\frac {35}{3}\)
\(a_n = a + (n − 1)d\)
\(a_9 = a + (9 − 1)5\)
\(a_9 = -\frac {35}{3} + 8 \times 5\)
\(a_9 = -\frac {35}{3} + 40\)
\(a_9 = \frac {-35+120}{3}\)
\(a_9 = \frac {85}{3}\)
(vi) Given that, \(a = 2\), \(d = 8\), \(S_n = 90\)
As, \(S_n = \frac {n}{2}[2a + (n-1)d]\)
\(90 = \frac n2[2 \times 2 + (n-1)8]\)
\(90 = \frac n2[4 + (n-1)8]\)
\(90 = n [2 + (n − 1)4]\)
\(90 = n [2 + 4n − 4]\)
\(90 = n (4n − 2)\)
\(90= 4n^2 − 2n\)
\(4n^2 − 2n − 90 = 0\)
\(4n^2 − 20n + 18n − 90 = 0\)
\(4n (n − 5) + 18 (n − 5) = 0\)
\((n − 5) (4n + 18) = 0\)
Either \(n − 5 = 0\) or \(4n + 18 = 0\)
\(n = 5\) or \(n = -\frac {18}{4} = -\frac {9}{2}\)
However, \(n\) can neither be negative nor fractional.
Therefore, \(n = 5\)
\(a_n = a + (n − 1)d\)
\(a_5 = 2 + (5 − 1)8\)
\(a_5= 2 + 4 \times 8\)
\(a_5= 2 + 32\)
\(a_5 = 34\)
(vii) Given that, \(a = 8\), \(a_n = 62\), \(S_n = 210\)
\(Sn = \frac {n}{2}[a + a_n]\)
\(210 = \frac n2[8 + 62]\)
\(210 = \frac n2 \times 70\)
\(n = 6\)
\(a_n = a + (n − 1)d\)
\(62 = 8 + (6 − 1)d\)
\(62 − 8 = 5d\)
\(54 = 5d\)
\(d = \frac {54}{5}\)
(viii) Given that, \(a_n = 4, d = 2, S_n = −14\)
\(a_n = a + (n − 1)d\)
\(4 = a + (n − 1)2\)
\(4 = a + 2n − 2\)
\(a + 2n = 6\)
\(a = 6 − 2n\) …….(i)
\(S_n = \frac n2[a + a_n]\)
\(-14 = \frac n2[a + 4]\)
\(−28 = n (a + 4)\)
\(−28 = n (6 − 2n + 4)\) {From equation (i)}
\(−28 = n (− 2n + 10)\)
\(−28 = − 2n^2 + 10n\)
\(2n^2 − 10n − 28 = 0\)
\(n^2 − 5n −14 = 0\)
\(n^2 − 7n + 2n − 14 = 0\)
\(n (n − 7) + 2(n − 7) = 0\)
\((n − 7) (n + 2) = 0\)
Either, \(n − 7 = 0\) or \(n + 2 = 0\)
\(n = 7\) or \(n = −2\)
However, \(n\) can neither be negative nor fractional.
Therefore, \(n = 7\) From equation (i), we obtain
\(a = 6 − 2n\)
\(a = 6 − 2 \times 7\)
\(a= 6 − 14\)
\(a= −8\)
(ix) Given that, \(a = 3\), \(n = 8\), \(S = 192\)
\(S_n = \frac n2[2a + (n-1)d]\)
\(192 = \frac 82[2 \times 3 + (8-1)d]\)
\(192 = 4 [6 + 7d]\)
\(48 = 6 + 7d\)
\(42 = 7d\)
\(d = 6\)
(x) Given that, \(l = 28\), \(S = 144\) and there are total of \(9\) terms.
\(S_n =\frac n2(a+l)\)
\(144 = \frac 92(a+28)\)
\(16 = \frac 12(a+28)\)
\(16 × 2 = a + 28\)
\(32 = a + 28\)
\(a = 32 - 28\)
\(a = 4\)
| Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
|---|---|---|---|---|---|---|
| Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Leaves of the sensitive plant move very quickly in response to ‘touch’. How is this stimulus of touch communicated and explain how the movement takes place?
Read the following sources of loan carefully and choose the correct option related to formal sources of credit:
(i) Commercial Bank
(ii) Landlords
(iii) Government
(iv) Money Lende