Question:

In \(ΔABC\) right angled at B, AB = 24 cm, BC = 7 m. Determine 
(i) sin A, cos A
(ii) sin C, cos C

Updated On: Nov 3, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Applying Pythagoras theorem for \(ΔABC,\)we obtain 
\(\text{AC}^ 2 =\text{ AB}^ 2 + \text{BC}^ 2\)
\(= (24\text{ cm})^2 + (7 \text{cm})^ 2\)
\(= (576 + 49)\)cm2
\(= 625\) cm2 
\(∴\)  AC = \(\sqrt{625}\) cm = 25 cm

(i)

In ΔABC right angled at B,AB=24cm, BC=7m.

\(\text{ sin A} = \frac{\text{Side}\ \text{ Opposite}\ \text{ to}\ ∠A }{\text{Hypotenuse}}\) \(= \frac{\text{BC}}{\text{AC}} = \frac{7}{25}\)

\(\text{ Cos A} = \frac{\text{Side}\ \text{ Adjacent}\ \text{ to}\ ∠A }{\text{Hypotenuse}}\)\(= \frac{\text{AB}}{\text{AC}} = \frac{24}{25}\)


(ii) 
In ΔABC right angled at B,AB=24cm, BC=7m.

\(\text{ sin C} = \frac{\text{Side}\ \text{ Opposite}\ \text{ to}\ ∠C }{\text{Hypotenuse}}\)\(= \frac{\text{AB}}{\text{AC}} = \frac{24}{25}\)

\(\text{ Cos C} = \frac{\text{Side}\ \text{ Adjacent}\ \text{ to}\ ∠C }{\text{Hypotenuse}}\)\(= \frac{\text{BC}}{\text{AC}} = \frac{7}{25}\)

Was this answer helpful?
0
0