In a Young’s double slit experiment, two slits are illuminated with light of wavelength \(800 \, \text{nm}\). The first minimum is detected at \(P\). The value of slit separation \(a\) is:
For Young’s double-slit experiments:
• Use the condition for minima or maxima to relate wavelength, slit separation, and screen distance.
• Ensure units are consistent when calculating.
Condition for Minima: Path difference for the first minimum:
\[ \Delta x = \frac{\lambda}{2}. \]
Slit Separation: From geometry:
\[ a = \frac{\lambda D}{\Delta x}. \]
Substituting values:
\[ a = \frac{800 \times 10^{-9} \times 5 \times 10^{-2}}{0.5 \times 10^{-3}} = 0.2 \, \text{mm}. \]
Final Answer: 0.2 mm
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.