In a Young’s double slit experiment, two slits are illuminated with light of wavelength \(800 \, \text{nm}\). The first minimum is detected at \(P\). The value of slit separation \(a\) is:
For Young’s double-slit experiments:
• Use the condition for minima or maxima to relate wavelength, slit separation, and screen distance.
• Ensure units are consistent when calculating.
Condition for Minima: Path difference for the first minimum:
\[ \Delta x = \frac{\lambda}{2}. \]
Slit Separation: From geometry:
\[ a = \frac{\lambda D}{\Delta x}. \]
Substituting values:
\[ a = \frac{800 \times 10^{-9} \times 5 \times 10^{-2}}{0.5 \times 10^{-3}} = 0.2 \, \text{mm}. \]
Final Answer: 0.2 mm
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}