Step 1: Rewrite the given function.
\[
f(x)=e^x+\int_0^1 yf(y)\,dy + xe^x\int_0^1 f(y)\,dy
\]
Let
\[
A=\int_0^1 yf(y)\,dy,\quad B=\int_0^1 f(y)\,dy
\]
Then
\[
f(x)=e^x+A+Bx e^x
\]
Step 2: Find $A$.
\[
A=\int_0^1 y(e^y+A+Bye^y)\,dy
\]
\[
A=\int_0^1 ye^y\,dy + A\int_0^1 y\,dy + B\int_0^1 y^2e^y\,dy
\]
\[
A=(0-( -1 ))+\frac{A}{2}+B(e-1)
\]
\[
\frac{A}{2}+B(1-e)=1 \quad \text{(Equation 1)}
\]
Step 3: Find $B$.
\[
B=\int_0^1 (e^y+A+Bye^y)\,dy
\]
\[
B=(e-1)+A+B(0-( -1 ))
\]
\[
B=e-1+A+B \Rightarrow A=1-e
\]
Step 4: Substitute $A$ in Equation (1).
\[
\frac{1-e}{2}+B(1-e)=1
\]
Solving gives
\[
B=1
\]
Step 5: Write final expression for $f(x)$.
\[
f(x)=e^x+(1-e)+xe^x
\]
Step 6: Find $f(0)+e$.
\[
f(0)=1+1-e=2-e
\]
\[
f(0)+e=2
\]
Final conclusion.
The value of $f(0)+e$ is 2.