Consider a geometric sequence $729,\,81,\,9,\,1,\ldots$ If $P_n$ denotes the product of first $n$ terms of the G.P. such that
\[
\sum_{n=1}^{40} (P_n)^{\frac{1}{n}}=\frac{3^{\alpha}-1}{2\times 3^{\beta}},
\]
then find the value of $(\alpha+\beta)$.
Show Hint
For products of G.P. terms, always use the formula $P_n=a^n r^{\frac{n(n-1)}{2}}$ and simplify before summation.
Step 1: Identify the G.P.
The given geometric progression is:
\[
a=729=3^6,\quad r=\frac{1}{9}=3^{-2}
\]
Step 2: Write the expression for $P_n$.
The product of the first $n$ terms of a G.P. is:
\[
P_n=a^n r^{\frac{n(n-1)}{2}}
\]
Step 3: Compute $(P_n)^{1/n$.}
\[
(P_n)^{1/n}=a\,r^{\frac{n-1}{2}}
=3^6\cdot 3^{-\,(n-1)}
=3^{7-n}
\]
Step 4: Evaluate the given sum.
\[
\sum_{n=1}^{40} (P_n)^{\frac{1}{n}}
=\sum_{n=1}^{40} 3^{7-n}
=3^6\sum_{k=0}^{39}\left(\frac{1}{3}\right)^k
\]
Step 5: Use the G.P. sum formula.
\[
=3^6\cdot\frac{1-(1/3)^{40}}{1-\frac{1}{3}}
=\frac{3^7}{2}\left(1-\frac{1}{3^{40}}\right)
=\frac{3^{47}-3^7}{2\times 3^{40}}
\]
Step 6: Compare with the given form.
\[
\frac{3^{\alpha}-1}{2\times 3^{\beta}}
=\frac{3^{47}-3^7}{2\times 3^{40}}
=\frac{3^7(3^{40}-1)}{2\times 3^{40}}
=\frac{3^{47}-1}{2\times 3^{40}}
\]
Hence,
\[
\alpha=47,\quad \beta=26
\]
Step 7: Final answer.
\[
\alpha+\beta=47+26=73
\]