Step 1: Write the general term of the series.
The given series can be written as:
\[
\sum_{k=0}^{12} \frac{1}{(2k+1)!\,(25-2k)!}
\]
Step 2: Use the binomial coefficient identity.
Recall:
\[
\binom{26}{r}=\frac{26!}{r!(26-r)!}
\]
Hence,
\[
\frac{1}{(2k+1)!(25-2k)!}
=\frac{26}{26!}\binom{26}{2k+1}
\]
Step 3: Rewrite the series.
\[
\sum_{k=0}^{12} \frac{1}{(2k+1)!(25-2k)!}
=\frac{26}{26!}\sum_{k=0}^{12}\binom{26}{2k+1}
\]
Step 4: Use the binomial sum identity.
The sum of odd binomial coefficients is:
\[
\sum_{\text{odd }r}\binom{26}{r}=2^{25}
\]
Step 5: Final calculation.
\[
\text{Sum}=\frac{26}{26!}\cdot 2^{25}
=\frac{2^{25}}{26!}
\]