
Real Depth is the real distance of an object under the surface as determined by immersing it with an accurate ruler.
The depth of an item in a denser media, as perceived from a rarer medium, is referred to as apparent depth in a medium. Its value is less than the real depth.
The relationship between the real depth and the apparent depth is given by
Real depthApparent depth=21=21
Where
If an object lying in denser medium and is observed from rarer medium, then
Real depthApparent depth=21>1
⇒ Real depth > Apparent depth
That is why, the river bed appeared shallow
If an object lying in rarer medium and is observed from denser medium, then
Real depthApparent depth=21<1
⇒ Real depth < Apparent depth
That is why high flying airplanes appear to be higher than its actual height.
| List-I | List-II | ||
| P | If \(n = 2\) and \(\alpha = 180°\), then all the possible values of \(\theta_0\) will be | I | \(30\degree\) or \(0\degree\) |
| Q | If \(n = √3\) and \(\alpha= 180°\), then all the possible values of \(\theta_0\) will be | II | \(60\degree\) or \(0\degree\) |
| R | If \(n = √3\) and \(\alpha= 180°\), then all the possible values of \(\phi_0\) will be | III | \(45\degree\) or \( 0\degree\) |
| S | If \(n = \sqrt2\) and \(\theta_0 = 45°\), then all the possible values of \(\alpha\) will be | IV | \(150\degree\) |
| \[0\degree\] | |||
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.