Charge Neutrality and Fraction of Ions Calculation
Consider the compound \( \text{M}_x \text{Y}_2 \text{O}_4 \), where the M ions exist in two oxidation states: \( \text{M}^{2+} \) and \( \text{M}^{3+} \). The fraction of \( \text{M}^{2+} \) ions is given as \( \frac{1}{3} \). Thus:
\[ \text{M}^{2+} = \frac{x}{3}, \quad \text{M}^{3+} = \frac{2x}{3} \]
Step 1: Apply Charge Neutrality
For the compound to be neutral, the total positive and negative charges must balance. This gives us the equation: \[ \frac{2x}{3} \cdot (+3) + \frac{x}{3} \cdot (+2) + 2 \cdot (+3) + 4 \cdot (-2) = 0 \] Simplify the terms: \[ \frac{6x}{3} + \frac{2x}{3} + 6 - 8 = 0 \]
Step 2: Solve for \( x \)
Combine terms: \[ \frac{6x}{3} + \frac{2x}{3} = 2 \] Multiply through by 3 to eliminate the denominators: \[ 6x + 2x = 6 \] Simplify: \[ 8x = 6 \quad \Rightarrow \quad x = \frac{6}{8} = 0.75 \]
Final Answer:
The value of \( x \) is \( x = 0.75 \).
To solve the problem, we use charge neutrality to find the value of \(X\) in the formula \(M_X Y_2 O_4\), given the oxidation states and fraction of \(M^{2+}\) ions.
Given:
- Formula: \(M_X Y_2 O_4\)
- \(M\) exists in \(+2\) and \(+3\) oxidation states
- Fraction of \(M^{2+}\) ions = \(\frac{1}{3}\)
- \(Y\) is in \(+3\) oxidation state
- Oxygen is in \(-2\) oxidation state
Step 1: Define variables for moles of \(M^{2+}\) and \(M^{3+}\):
Let total moles of \(M\) be \(X\). Then:
\[
\text{Moles of } M^{2+} = \frac{1}{3} X
\]
\[
\text{Moles of } M^{3+} = X - \frac{1}{3} X = \frac{2}{3} X
\]
Step 2: Calculate total positive charge from \(M\) and \(Y\):
\[
\text{Charge from } M = \left(\frac{1}{3} X\right) \times (+2) + \left(\frac{2}{3} X\right) \times (+3) = \frac{2}{3} X + 2 X = \frac{2}{3} X + 2 X = \frac{8}{3} X
\]
(Notice corrected addition: \(\frac{1}{3}X \times 2 = \frac{2}{3} X\), and \(\frac{2}{3} X \times 3 = 2 X\), sum is \(\frac{2}{3} X + 2 X = \frac{8}{3} X\))
Charge from \(Y_2\):
\[
2 \times (+3) = +6
\]
Step 3: Total negative charge from oxygen:
\[
4 \times (-2) = -8
\]
Step 4: Apply charge neutrality:
\[
\text{Total positive charge} + \text{Total negative charge} = 0
\]
\[
\frac{8}{3} X + 6 - 8 = 0 \implies \frac{8}{3} X - 2 = 0
\]
\[
\frac{8}{3} X = 2 \implies X = \frac{2 \times 3}{8} = \frac{6}{8} = 0.75
\]
Final Answer:
\[
\boxed{0.75}
\]
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.