Charge Neutrality and Fraction of Ions Calculation
Consider the compound \( \text{M}_x \text{Y}_2 \text{O}_4 \), where the M ions exist in two oxidation states: \( \text{M}^{2+} \) and \( \text{M}^{3+} \). The fraction of \( \text{M}^{2+} \) ions is given as \( \frac{1}{3} \). Thus:
\[ \text{M}^{2+} = \frac{x}{3}, \quad \text{M}^{3+} = \frac{2x}{3} \]
Step 1: Apply Charge Neutrality
For the compound to be neutral, the total positive and negative charges must balance. This gives us the equation: \[ \frac{2x}{3} \cdot (+3) + \frac{x}{3} \cdot (+2) + 2 \cdot (+3) + 4 \cdot (-2) = 0 \] Simplify the terms: \[ \frac{6x}{3} + \frac{2x}{3} + 6 - 8 = 0 \]
Step 2: Solve for \( x \)
Combine terms: \[ \frac{6x}{3} + \frac{2x}{3} = 2 \] Multiply through by 3 to eliminate the denominators: \[ 6x + 2x = 6 \] Simplify: \[ 8x = 6 \quad \Rightarrow \quad x = \frac{6}{8} = 0.75 \]
Final Answer:
The value of \( x \) is \( x = 0.75 \).
To solve the problem, we use charge neutrality to find the value of \(X\) in the formula \(M_X Y_2 O_4\), given the oxidation states and fraction of \(M^{2+}\) ions.
Given:
- Formula: \(M_X Y_2 O_4\)
- \(M\) exists in \(+2\) and \(+3\) oxidation states
- Fraction of \(M^{2+}\) ions = \(\frac{1}{3}\)
- \(Y\) is in \(+3\) oxidation state
- Oxygen is in \(-2\) oxidation state
Step 1: Define variables for moles of \(M^{2+}\) and \(M^{3+}\):
Let total moles of \(M\) be \(X\). Then:
\[
\text{Moles of } M^{2+} = \frac{1}{3} X
\]
\[
\text{Moles of } M^{3+} = X - \frac{1}{3} X = \frac{2}{3} X
\]
Step 2: Calculate total positive charge from \(M\) and \(Y\):
\[
\text{Charge from } M = \left(\frac{1}{3} X\right) \times (+2) + \left(\frac{2}{3} X\right) \times (+3) = \frac{2}{3} X + 2 X = \frac{2}{3} X + 2 X = \frac{8}{3} X
\]
(Notice corrected addition: \(\frac{1}{3}X \times 2 = \frac{2}{3} X\), and \(\frac{2}{3} X \times 3 = 2 X\), sum is \(\frac{2}{3} X + 2 X = \frac{8}{3} X\))
Charge from \(Y_2\):
\[
2 \times (+3) = +6
\]
Step 3: Total negative charge from oxygen:
\[
4 \times (-2) = -8
\]
Step 4: Apply charge neutrality:
\[
\text{Total positive charge} + \text{Total negative charge} = 0
\]
\[
\frac{8}{3} X + 6 - 8 = 0 \implies \frac{8}{3} X - 2 = 0
\]
\[
\frac{8}{3} X = 2 \implies X = \frac{2 \times 3}{8} = \frac{6}{8} = 0.75
\]
Final Answer:
\[
\boxed{0.75}
\]
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?