To identify the emitted particles, let us verify the conservation of atomic number (\(Z\)) and mass number (\(A\)).
- Atomic number (\(Z\)):
\[ Z_{\text{LHS}} = 92, \quad Z_{\text{RHS}} = 56 + 36 = 92 \]
\(Z\) is conserved.
- Mass number (\(A\)):
\[ A_{\text{LHS}} = 236, \quad A_{\text{RHS}} = 141 + 92 = 233 \]
The mass number is not conserved. The difference is:
\[ A_{\text{LHS}} - A_{\text{RHS}} = 236 - 233 = 3 \]
The missing mass corresponds to three neutrons (\(R = \text{neutrons}\)).
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The density of the copper ($^{64}Cu$) nucleus is greater than that of the carbon ($^{12}C$) nucleus.
Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$.
In the light of the above statements, choose the most appropriate answer from the options given below:
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline A. \ ^{236}_{92} U \rightarrow ^{94}_{38} Sr + ^{140}_{54} Xe + 2n & \text{I. Chemical Reaction} \\ \hline B. \ 2H_2 + O_2 \rightarrow 2H_2O & \text{II. Fusion with +ve Q value} \\ \hline C. \ ^3_1 H + ^2_1 H \rightarrow ^4_2 He + n & \text{III. Fission} \\ \hline D. \ ^1_1 H + ^3_1 H \rightarrow ^4_2 H + \gamma & \text{IV. Fusion with -ve Q value} \\ \hline \end{array} \]
Choose the correct answer from the options given below:
Match the following types of nuclei with examples shown:
Consider the following molecules:
The order of rate of hydrolysis is: