Question:

In a \(\Delta ABC\). with usual notation, match the items in List - I with the items in List - II and choose the correct option.
List IList II
(A)\(r_1r_2\sqrt{\bigg(\frac{4R-r_1-r_2}{r_1+r_2}\bigg)}\)1\(b\)
(B)\(\frac{r_2(r_3+r_1)}{\sqrt{r_1r_2+r_2r_3+r_3r_1}}\)2\(a^2,b^2,c^2 are \;in \;AP\)
(C)\(\frac{a}{c}=\frac{sin(A-B)}{sin(B-C)}\)3\(\triangle\)
(D)\(bc\;cos^2\frac{A}{2}\)4\(R\; r_1r_2r_3\)
  5\(s(s-a)\)

Updated On: Jan 2, 2024
  • (A)-(4), (B)-(3), (C)-(1), (D)-(5)
  • (A)-(5), (B)-(4), (C)-(3), (D)-(2)
  • (A)-(3) , (B)-(1), (C)-(2) , (D)-(5)
  • (A)-(4) , (B)-(5), (C)-(2) , (D)-(1)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

(A) \(r_{1} r_{2} \sqrt{\frac{4 R-r_{1}-r_{2}}{r_{1}+r_{2}}}=\left[\frac{\Delta^{2}}{(s-a)(s-b)}\right.\) \(\left.\sqrt{\frac{4 R-4 R \cos \frac{C}{2}\left(\sin \frac{A}{2} \cos \frac{B}{2}+\sin \frac{B}{2} \cos \frac{A}{2}\right)}{4 R \cos \frac{C}{2}\left(\sin \frac{A}{2} \cos \frac{B}{2}+\sin \frac{B}{2} \cos \frac{A}{2}\right)}}\right]\) 

\(=\frac{\Delta^{2}}{(s-a)(s-b)} \sqrt{\frac{4 R\left(1-\cos ^{2} \frac{C}{2}\right)}{4 R \cos ^{2} \frac{C}{2}}}\) 

\(=\frac{\Delta^{2}}{(s-a)(s-b)} \tan \frac{C}{2}\) 

\(=\frac{\Delta^{2}}{(s-a)(s-b)} \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}\) 

\(=\frac{\Delta^{2}}{\Delta}=\Delta\)


(B) \(\frac{r_{2}\left(r_{3}+r_{1}\right)}{\sqrt{r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}}}\)

\(=\frac{\frac{\Delta}{s-b}\left(\frac{\Delta}{s-c}+\frac{\Delta}{s-a}\right)}{\sqrt{\frac{(s-a)+(s-b)+(s-c)}{(s-a)(s-b)(s-c)}}}\)

\(=\frac{\frac{\Delta}{(s-b)} \times \frac{2 S-a-c}{(s-a)(s-c)}}{\sqrt{\frac{3 S-a-b-c}{(s-a)(s-b)(s-c)}}}=\frac{\Delta(b)}{\sqrt{s(s-a)(s-b)(s-c)}}=b\) 


(C) \(\frac{a}{c}=\frac{\sin (A-B)}{\sin (B-C)}\) 

\(\Rightarrow \frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}\) 
\(\Rightarrow \sin A \sin (B-C)=\sin (A-B) \sin C\) 
\(\Rightarrow \sin A(\sin B \cos C-\sin C \cos B)\) \(=(\sin A \cos B-\cos A \sin B) \sin C\)
\(\Rightarrow 2 \sin A \cos B \sin C=\sin A \sin B \cos C\) \(+\sin B \cos A \sin C\)

\(\Rightarrow 2 \frac{a}{2 R} \times \frac{a^{2}+c^{2}-b^{2}}{2 a c} \times \frac{c}{2 R}\) \(=\left(\frac{a}{2 R} \times \frac{b}{2 R} \times \frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)+\) \(\left(\frac{b}{2 R} \times \frac{b^{2}+c^{2}-a^{2}}{2 b c} \times \frac{c}{2 R}\right)\)

\(\Rightarrow 2\left(a^{2}+c^{2}-b^{2}\right)=a^{2}+b^{2}-c^{2}+b^{2}+c^{2}-a^{2}\)
\(\Rightarrow 2 a^{2}+2 c^{2}-2 b^{2}=2 b^{2}\)
\(\Rightarrow 2 b^{2}=a^{2}+c^{2}\)
\(\Rightarrow a^{2}, b^{2}, c^{2}\) are in AP.


(D) \(b c \cos ^{2} \frac{A}{2}=b c \times \frac{s(s-a)}{b c}=s(s-a)\)

Therefore, the correct option is (C) : (A)-(3) , (B)-(1), (C)-(2) , (D)-(5)

Was this answer helpful?
0
0

Concepts Used:

Trigonometric Identities

Various trigonometric identities are as follows:

Even and Odd Functions

Cosecant and Secant are even functions, all the others are odd.

  • sin (-A) = – sinA,
  • cos (-A) = cos A,
  • cosec (-A) = -cosec A,
  • cot (-A) = -cot A,
  • tan (-A) = – tan A,
  • sec (-A) = sec A.

Pythagorean Identities

  1. sin2θ + cos2θ = 1
  2. 1 + tan2θ = sec2θ
  3. 1 + cot2θ = cosec2θ

Periodic Functions

  1. T-Ratios of (2π + x)
    sin (2π + x) = sin x,
    cos (2π + x) = cos x,
    tan (2π + x) = tan x,
    cosec (2π + x) = cosec x,
    sec (2π + x) = sec x,
    cot (2π+x)=cotx.
  2. T-Ratios of (π -x)
    sin (π–x) = sin x,
    cos (π–x) = - cos x,
    tan (π–x) = - tan x,
    cosec (π–x) = cosec x,
    sec (π–x) = - sec x,
    cot (π–x) = - cot x.
  3. T-Ratios of (π+ x)
    sin (π+x) = - sin x,
    cos (π+x) = - cos x,
    tan (π+x) = tan x,
    cosec (π+x) = - cosec x,
    sec (π+x) = - sec x,
    cot (π+x) = cot x.
  4. T-Ratios of (2π – x)
    sin (2π–x) = - sin x,
    cos (2n–x) = cos x,
    tan (2π–x) = - tan x,
    cosec (2π–x) = - cosec x,
    sec (2π–x) = sec x,
    cot (2π-x) = - cot x

Sum and Difference Identities

  1. T-Ratios of (x + y)
    sin (x+y) = sinx.cosy + cosx.sin y
    cos (x+y) = cosx.cosy – sinx.siny
  2. T-Ratios of (x – y)
    sin (x–y) = sinx.cosy – cos.x.sin y
    cos (x-y) = cosx.cosy + sinx.siny

Product of T-ratios

  • 2sinx cosy = sin(x+y) + sin(x–y)
  • 2cosx siny = sin(x+y) – sin(x–y)
  • 2 cosx cosy = cos(x+y) + cos(x–y)
  • 2sinx.siny = cos(x–y) – cos(x+y)

T-Ratios of (2x)
sin2x = 2sin x cos x
cos 2x = cos2x – sin2

= 2cos2x – 1 

= 1 – 2sin2x

T-Ratios of (3x)
sin 3x = 3sinx – 4sin3x
cos 3x = 4cos3x – 3cosx