To solve for the argument of \( z^2 e^{-i} \), where \( z = \sqrt{3} + i \), follow these steps:
Step 1: Compute the argument of \( z \)
Express \( z \) in polar form. The modulus \(|z|\) is \(\sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{4} = 2\). The argument \( \theta \) is given by \(\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}\).
Step 2: Compute \( z^2 \)
Square the complex number \( z \):
\( z^2 = (\sqrt{3} + i)^2 = 3 + 2\sqrt{3}i - 1 = 2 + 2\sqrt{3}i \).
The modulus of \( z^2 \) is \(\sqrt{2^2 + (2\sqrt{3})^2} = \sqrt{4 + 12} = 4\).
The tangent \(\tan^{-1}\left(\frac{2\sqrt{3}}{2}\right) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}\).
Step 3: Compute \( z^2 e^{-i} \)
The argument of \( e^{-i} \) is \(-1\).
Add the arguments: \(\frac{\pi}{3} - 1\).
Step 4: Find the principal argument
Simplifying: \(\frac{\pi}{3} - 1 = \frac{\pi}{3}\) since its angle lies in the principal argument range between \(-\pi\) and \(\pi\).
The argument of \( z^2 e^{-i} \) is thus \(\boxed{\frac{\pi}{3}}\).