Step 1: Define the given condition.
Let \( z_1 = x_1 + i y_1 \) and \( z_2 = x_2 + i y_2 \), where \( x_1, y_1, x_2, y_2 \) are real numbers. The condition states that \( \frac{z_1}{3z_2} \) is purely imaginary. A complex number is purely imaginary if its real part is zero. So:
\[
\frac{z_1}{3z_2} = \frac{x_1 + i y_1}{3 (x_2 + i y_2)}.
\]
The real part of this expression must be zero.
Step 2: Compute the real part.
Multiply numerator and denominator by the conjugate of the denominator \( 3z_2 \):
\[
\frac{z_1}{3z_2} = \frac{(x_1 + i y_1) (x_2 - i y_2)}{3 (x_2^2 + y_2^2)} = \frac{(x_1 x_2 + y_1 y_2) + i (y_1 x_2 - x_1 y_2)}{3 (x_2^2 + y_2^2)}.
\]
The real part is:
\[
\frac{x_1 x_2 + y_1 y_2}{3 (x_2^2 + y_2^2)} = 0,
\]
assuming \( z_2 \neq 0 \) (i.e., \( x_2^2 + y_2^2 \neq 0 \)). Thus:
\[
x_1 x_2 + y_1 y_2 = 0. \quad (1)
\]
Step 3: Evaluate the expression \( \left| \frac{z_1 - z_2}{z_1 + z_2} \right| \).
Compute the numerator and denominator:
\( z_1 - z_2 = (x_1 - x_2) + i (y_1 - y_2) \),
\( z_1 + z_2 = (x_1 + x_2) + i (y_1 + y_2) \).
The modulus is:
\[
\left| \frac{z_1 - z_2}{z_1 + z_2} \right| = \frac{|z_1 - z_2|}{|z_1 + z_2|},
\]
where \( |z| = \sqrt{x^2 + y^2} \) for \( z = x + i y \).
\( |z_1 - z_2|^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2 \),
\( |z_1 + z_2|^2 = (x_1 + x_2)^2 + (y_1 + y_2)^2 \).
Step 4: Use the condition to simplify.
From equation (1), \( x_1 x_2 + y_1 y_2 = 0 \), which implies \( \text{Re}(z_1 \overline{z_2}) = 0 \), or \( z_1 \overline{z_2} \) is purely imaginary. This means:
\[
z_1 \overline{z_2} = - \overline{z_1 z_2},
\]
but more directly, \( \text{Re}(z_1 \overline{z_2}) = 0 \). Now, consider the ratio:
\[
\frac{z_1 - z_2}{z_1 + z_2} = \frac{(x_1 - x_2) + i (y_1 - y_2)}{(x_1 + x_2) + i (y_1 + y_2)}.
\]
The modulus squared is:
\[
\left| \frac{z_1 - z_2}{z_1 + z_2} \right|^2 = \frac{(x_1 - x_2)^2 + (y_1 - y_2)^2}{(x_1 + x_2)^2 + (y_1 + y_2)^2}.
\]
Using \( x_1 x_2 + y_1 y_2 = 0 \):
Expand: \( (x_1 + x_2)^2 + (y_1 + y_2)^2 = x_1^2 + 2x_1 x_2 + x_2^2 + y_1^2 + 2y_1 y_2 + y_2^2 \),
Since \( 2(x_1 x_2 + y_1 y_2) = 0 \), it simplifies to \( x_1^2 + x_2^2 + y_1^2 + y_2^2 + 0 = |z_1|^2 + |z_2|^2 \).
Similarly, \( (x_1 - x_2)^2 + (y_1 - y_2)^2 = x_1^2 - 2x_1 x_2 + x_2^2 + y_1^2 - 2y_1 y_2 + y_2^2 = |z_1|^2 + |z_2|^2 - 2(x_1 x_2 + y_1 y_2) = |z_1|^2 + |z_2|^2 \).
Thus:
\[
\left| \frac{z_1 - z_2}{z_1 + z_2} \right|^2 = \frac{|z_1|^2 + |z_2|^2}{|z_1|^2 + |z_2|^2} = 1,
\]
so \( \left| \frac{z_1 - z_2}{z_1 + z_2} \right| = 1 \), assuming \( z_1 + z_2 \neq 0 \).
Step 5: Verify and select the answer.
The condition \( \frac{z_1}{3z_2} \) purely imaginary leads to \( x_1 x_2 + y_1 y_2 = 0 \), which holds for the modulus result. The value is 1, matching option (A).