Step 1: Compute \( z - 1 \)
\[
z - 1 = (1 + \cos\theta - i\sin\theta) - 1 = \cos\theta - i\sin\theta
\]
Step 2: Find \( |z - 1| \) and \( |z - 1|^2 \)
\[
|z - 1| = \sqrt{\cos^2\theta + \sin^2\theta} = \sqrt{1} = 1
\]
\[
|z - 1|^2 = 1^2 = 1
\]
Step 3: Find \( |z| \) and \( |z|^2 \)
\[
|z| = \sqrt{(1 + \cos\theta)^2 + \sin^2\theta} = \sqrt{1 + 2\cos\theta + \cos^2\theta + \sin^2\theta}
\]
Using the identity \( \cos^2\theta + \sin^2\theta = 1 \):
\[
|z| = \sqrt{2 + 2\cos\theta} = \sqrt{2(1 + \cos\theta)}
\]
\[
|z|^2 = 2(1 + \cos\theta)
\]
Step 4: Substitute into the expression
\[
\left[ |z - 1|^2 \cdot \frac{|z|^2}{4} \right]^{1/2} = \left[ 1 \cdot \frac{2(1 + \cos\theta)}{4} \right]^{1/2} = \sqrt{\frac{1 + \cos\theta}{2}}
\]
Step 5: Simplify using trigonometric identity
Recall the half-angle identity:
\[
\cos\left( \frac{\theta}{2} \right) = \sqrt{\frac{1 + \cos\theta}{2}}
\]
Since \( 0<\theta<\pi \), \( \cos\left( \frac{\theta}{2} \right) \) is positive.
Step 6: Match with the given options
The simplified form matches option 3.
Verification:
Let \( \theta = \frac{\pi}{2} \):
\[
z = 1 - i \implies |z - 1| = 1, \quad |z| = \sqrt{2}
\]
\[
\left[ 1 \cdot \frac{2}{4} \right]^{1/2} = \frac{\sqrt{2}}{2} = \cos\left( \frac{\pi}{4} \right)
\]
This confirms option 3 is correct.
Conclusion:
The correct answer is \(\boxed{3}\).