We are given the complex numbers:
\[
z_1 = 2 + 5i, \quad z_2 = -1 + 4i, \quad z_3 = i
\]
We need to evaluate the expression:
\[
\frac{|z_1 - z_3|}{|z_3 - z_2|}
\]
Step 1: First, compute \( |z_1 - z_3| \):
\[
z_1 - z_3 = (2 + 5i) - i = 2 + 4i
\]
\[
|z_1 - z_3| = \sqrt{2^2 + 4^2} = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5}
\]
Step 2: Next, compute \( |z_3 - z_2| \):
\[
z_3 - z_2 = i - (-1 + 4i) = 1 - 3i
\]
\[
|z_3 - z_2| = \sqrt{1^2 + (-3)^2} = \sqrt{1 + 9} = \sqrt{10}
\]
Step 3: Now, substitute these values into the expression:
\[
\frac{|z_1 - z_3|}{|z_3 - z_2|} = \frac{2\sqrt{5}}{\sqrt{10}}
\]
Step 4: Simplify the expression:
\[
\frac{2\sqrt{5}}{\sqrt{10}} = \frac{2\sqrt{5}}{\sqrt{2 \times 5}} = \frac{2\sqrt{5}}{\sqrt{5}\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}
\]
Thus, the correct answer is \( \sqrt{2} \).