The roots of the cubic equation \( z^3 + bz^2 + cz + d = 0 \) are given as \( i, z_1 = 2 - 3i \), and \( \overline{z_1} = 2 + 3i \).
For a cubic equation with roots \( \alpha, \beta, \gamma \), the equation can be written as \( (z - \alpha)(z - \beta)(z - \gamma) = 0 \).
In our case, the roots are \( i, 2 - 3i, 2 + 3i \).
So the equation is:
$$ (z - i)(z - (2 - 3i))(z - (2 + 3i)) = 0 $$
$$ (z - i)((z - 2) + 3i)((z - 2) - 3i) = 0 $$
Using the identity \( (x + y)(x - y) = x^2 - y^2 \) with \( x = z - 2 \) and \( y = 3i \):
$$ (z - i)((z - 2)^2 - (3i)^2) = 0 $$
$$ (z - i)((z^2 - 4z + 4) - (9i^2)) = 0 $$
Since \( i^2 = -1 \):
$$ (z - i)(z^2 - 4z + 4 - (-9)) = 0 $$
$$ (z - i)(z^2 - 4z + 13) = 0 $$
Expanding this product:
$$ z(z^2 - 4z + 13) - i(z^2 - 4z + 13) = 0 $$
$$ z^3 - 4z^2 + 13z - iz^2 + 4iz - 13i = 0 $$
$$ z^3 + (-4 - i)z^2 + (13 + 4i)z - 13i = 0 $$
Comparing this with the given equation \( z^3 + bz^2 + cz + d = 0 \), we have:
$$ b = -4 - i $$
$$ c = 13 + 4i $$
$$ d = -13i $$
We need to find \( b + c + d \):
$$ b + c + d = (-4 - i) + (13 + 4i) + (-13i) $$
$$ b + c + d = -4 - i + 13 + 4i - 13i $$
$$ b + c + d = (-4 + 13) + (-1 + 4 - 13)i $$
$$ b + c + d = 9 + (-10)i $$
$$ b + c + d = 9 - 10i $$