Given:
\((x^2 - 4)dy/dx = (y^2 - 3y)dx = 0.\)
Rearranging:
\(\frac{dy}{y(y - 3)} = \frac{dx}{x^2 - 4}.\)
Using partial fractions:
\(\frac{1}{y(y - 3)} = \frac{1}{3} \left(\frac{1}{y - 3} - \frac{1}{y}\right).\)
So:
\(\frac{1}{3} \left(\frac{1}{y - 3} - \frac{1}{y}\right) dy = \frac{dx}{x^2 - 4}.\)
Integrating both sides:
\(\frac{1}{3} (\ln|y - 3| - \ln|y|) = \frac{1}{4} \ln\left|\frac{x - 2}{x + 2}\right| + C.\)
Simplifying:
\(\frac{1}{3} \ln \frac{y - 3}{y} = \frac{1}{4} \ln\left|\frac{x - 2}{x + 2}\right| + C.\)
Given \(x = 4\) and \(y = \frac{3}{2}\), substituting these values:
\(\frac{1}{3} \ln \frac{\frac{3}{2} - 3}{\frac{3}{2}} = \frac{1}{4} \ln \left|\frac{4 - 2}{4 + 2}\right| + C.\)
\(\frac{1}{3} \ln \frac{-\frac{3}{2}}{\frac{3}{2}} = \frac{1}{4} \ln \frac{2}{6} + C.\)
Calculating \(C\):
\(C = \frac{1}{4} \ln 3.\)
At \(x = 10\):
\(\frac{1}{3} \ln \frac{y - 3}{y} = \frac{1}{4} \ln \left|\frac{10 - 2}{10 + 2}\right| + \frac{1}{4} \ln 3.\)
Simplifying:
\(\ln \frac{y - 3}{y} = \ln 2^{3/4}.\)
Thus:
\(\ln \frac{y - 3}{y} = \ln 2^{3/4}.\)
Given that \(y(4) = \frac{3}{2}\) and \(y \in (0, 3): \frac{dy}{dx} < 0.\
The Correct answer is: \( \frac{3}{1 + (8)^{1/4}} \)
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:

Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is: