To solve the given differential equation \( (x^2 - 4) \, dy - (y^2 - 3y) \, dx = 0 \) with the condition \( x > 2 \) and \( y(4) = \frac{3}{2} \), we need to find the value of \( y(10) \).
The differential equation can be written in the form:
\((x^2 - 4) \frac{dy}{dx} = y^2 - 3y\)
Rearranging terms gives:
\(\frac{dy}{dx} = \frac{y^2 - 3y}{x^2 - 4}\)
This is a separable differential equation. We separate variables as follows:
\(\frac{dy}{y^2 - 3y} = \frac{dx}{x^2 - 4}\)
To integrate, perform partial fraction decomposition on both sides. The left side becomes:
\(\frac{dy}{y(y - 3)} = \left(\frac{1}{y} + \frac{-1}{y - 3}\right) dy\)
Integrating both sides, we find:
\(\int \frac{1}{y} dy - \int \frac{1}{y - 3} dy = \int \frac{1}{x^2 - 4} dx\)
The integrals are calculated as follows:
Combining results from both sides, we have:
\(\ln \left|\frac{y}{y - 3}\right| = \frac{1}{4} \ln \left|\frac{x - 2}{x + 2}\right| + C\)
Taking exponentials on both sides yields:
\(\frac{y}{y - 3} = A \left(\frac{x - 2}{x + 2}\right)^{1/4}\)
Where \( A \) is an integration constant. Now, use the initial condition \( y(4) = \frac{3}{2} \).
Substituting these values gives:
\(\frac{\frac{3}{2}}{\frac{3}{2} - 3} = A \left(\frac{4 - 2}{4 + 2}\right)^{1/4}\)
This gives:
\(-3 = A \frac{1}{4^{1/4}} \Rightarrow A = -3 \times (2^{1/2})\)
Now, substitute \( x = 10 \) to find \( y(10) \):
\(\frac{y(10)}{y(10) - 3} = -3 \times (2^{1/2}) \left(\frac{10 - 2}{10 + 2}\right)^{1/4}\)
Simplifying further:
\(\frac{y(10)}{y(10) - 3} = -3 \cdot (2^{1/2}) \cdot \frac{4^{1/4}}{4^{1/4}}\)
This gives:
\(a=\frac{1}{2^{1/2}}\)
The desired solution is
\(y(10) = \frac{3}{1 + (8)^{1/4}}\)
Given:
\((x^2 - 4)dy/dx = (y^2 - 3y)dx = 0.\)
Rearranging:
\(\frac{dy}{y(y - 3)} = \frac{dx}{x^2 - 4}.\)
Using partial fractions:
\(\frac{1}{y(y - 3)} = \frac{1}{3} \left(\frac{1}{y - 3} - \frac{1}{y}\right).\)
So:
\(\frac{1}{3} \left(\frac{1}{y - 3} - \frac{1}{y}\right) dy = \frac{dx}{x^2 - 4}.\)
Integrating both sides:
\(\frac{1}{3} (\ln|y - 3| - \ln|y|) = \frac{1}{4} \ln\left|\frac{x - 2}{x + 2}\right| + C.\)
Simplifying:
\(\frac{1}{3} \ln \frac{y - 3}{y} = \frac{1}{4} \ln\left|\frac{x - 2}{x + 2}\right| + C.\)
Given \(x = 4\) and \(y = \frac{3}{2}\), substituting these values:
\(\frac{1}{3} \ln \frac{\frac{3}{2} - 3}{\frac{3}{2}} = \frac{1}{4} \ln \left|\frac{4 - 2}{4 + 2}\right| + C.\)
\(\frac{1}{3} \ln \frac{-\frac{3}{2}}{\frac{3}{2}} = \frac{1}{4} \ln \frac{2}{6} + C.\)
Calculating \(C\):
\(C = \frac{1}{4} \ln 3.\)
At \(x = 10\):
\(\frac{1}{3} \ln \frac{y - 3}{y} = \frac{1}{4} \ln \left|\frac{10 - 2}{10 + 2}\right| + \frac{1}{4} \ln 3.\)
Simplifying:
\(\ln \frac{y - 3}{y} = \ln 2^{3/4}.\)
Thus:
\(\ln \frac{y - 3}{y} = \ln 2^{3/4}.\)
Given that \(y(4) = \frac{3}{2}\) and \(y \in (0, 3): \frac{dy}{dx} < 0.\
The Correct answer is: \( \frac{3}{1 + (8)^{1/4}} \)
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 