Given:
\((x^2 - 4)dy/dx = (y^2 - 3y)dx = 0.\)
Rearranging:
\(\frac{dy}{y(y - 3)} = \frac{dx}{x^2 - 4}.\)
Using partial fractions:
\(\frac{1}{y(y - 3)} = \frac{1}{3} \left(\frac{1}{y - 3} - \frac{1}{y}\right).\)
So:
\(\frac{1}{3} \left(\frac{1}{y - 3} - \frac{1}{y}\right) dy = \frac{dx}{x^2 - 4}.\)
Integrating both sides:
\(\frac{1}{3} (\ln|y - 3| - \ln|y|) = \frac{1}{4} \ln\left|\frac{x - 2}{x + 2}\right| + C.\)
Simplifying:
\(\frac{1}{3} \ln \frac{y - 3}{y} = \frac{1}{4} \ln\left|\frac{x - 2}{x + 2}\right| + C.\)
Given \(x = 4\) and \(y = \frac{3}{2}\), substituting these values:
\(\frac{1}{3} \ln \frac{\frac{3}{2} - 3}{\frac{3}{2}} = \frac{1}{4} \ln \left|\frac{4 - 2}{4 + 2}\right| + C.\)
\(\frac{1}{3} \ln \frac{-\frac{3}{2}}{\frac{3}{2}} = \frac{1}{4} \ln \frac{2}{6} + C.\)
Calculating \(C\):
\(C = \frac{1}{4} \ln 3.\)
At \(x = 10\):
\(\frac{1}{3} \ln \frac{y - 3}{y} = \frac{1}{4} \ln \left|\frac{10 - 2}{10 + 2}\right| + \frac{1}{4} \ln 3.\)
Simplifying:
\(\ln \frac{y - 3}{y} = \ln 2^{3/4}.\)
Thus:
\(\ln \frac{y - 3}{y} = \ln 2^{3/4}.\)
Given that \(y(4) = \frac{3}{2}\) and \(y \in (0, 3): \frac{dy}{dx} < 0.\
The Correct answer is: \( \frac{3}{1 + (8)^{1/4}} \)
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2\ is :