Step 1: Denote the integral by \( I \).
Let \( I = \int_{0}^{\pi/2} \log\left(\frac{4 + 3\sin x}{4 + 3\cos x}\right) dx \).
Step 2: Use the property of definite integrals \( \int_{0}^{a} f(x) dx = \int_{0^{a} f(a - x) dx \).}
Applying this property with \( a = \pi/2 \), we have:
\[
I = \int_{0}^{\pi/2} \log\left(\frac{4 + 3\sin(\frac{\pi}{2} - x)}{4 + 3\cos(\frac{\pi}{2} - x)}\right) dx
\]
Using the trigonometric identities \( \sin(\frac{\pi}{2} - x) = \cos x \) and \( \cos(\frac{\pi}{2} - x) = \sin x \), we get:
\[
I = \int_{0}^{\pi/2} \log\left(\frac{4 + 3\cos x}{4 + 3\sin x}\right) dx
\]
Step 3: Use the property of logarithms \( \log\left(\frac{a}{b}\right) = -\log\left(\frac{b}{a}\right) \).
\[
I = \int_{0}^{\pi/2} \log\left(\left(\frac{4 + 3\sin x}{4 + 3\cos x}\right)^{-1}\right) dx
\]
\[
I = \int_{0}^{\pi/2} -\log\left(\frac{4 + 3\sin x}{4 + 3\cos x}\right) dx
\]
\[
I = - \int_{0}^{\pi/2} \log\left(\frac{4 + 3\sin x}{4 + 3\cos x}\right) dx
\]
Step 4: Relate the new integral to the original integral \( I \).
We see that the integral obtained in Step 3 is \( -I \). Therefore, we have:
\[
I = -I
\]
Step 5: Solve for \( I \).
Adding \( I \) to both sides of the equation \( I = -I \), we get:
\[
2I = 0
\]
\[
I = 0
\]
Thus, the value of the integral is \( 0 \).