Step 1: Simplify the given expression for \( y \).
The given expression for \( y \) is:
\[
y = \tan^{-1} \left( \frac{x - \sqrt{1 - x^2}}{x + \sqrt{1 - x^2}} \right)
\]
Step 2: Apply the derivative formula.
The derivative of \( \tan^{-1}(z) \) is \( \frac{d}{dx} \left( \tan^{-1}(z) \right) = \frac{1}{1 + z^2} \cdot \frac{dz}{dx} \). In our case, the expression for \( z \) involves \( x \), so we differentiate it to obtain:
\[
\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}
\]
Step 3: Conclusion.
The correct answer is \( \frac{1}{\sqrt{1 - x^2}} \).