If \((xe)^y = e^x\), then we need to find \(\frac{dy}{dx}\).
Take the natural logarithm of both sides:
\(\ln((xe)^y) = \ln(e^x)\)
\(y \ln(xe) = x\)
\(y (\ln x + \ln e) = x\)
\(y (\ln x + 1) = x\)
\(y = \frac{x}{1+\ln x}\)
Now, we differentiate with respect to x:
\(\frac{dy}{dx} = \frac{d}{dx}(\frac{x}{1+\ln x})\)
Using the quotient rule: \(\frac{d}{dx} \frac{u}{v} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}\)
\(\frac{dy}{dx} = \frac{(1+\ln x)(1) - x(\frac{1}{x})}{(1+\ln x)^2}\)
\(\frac{dy}{dx} = \frac{1+\ln x - 1}{(1+\ln x)^2}\)
\(\frac{dy}{dx} = \frac{\ln x}{(1+\ln x)^2}\)
Therefore, the correct option is (A) \(\frac{\ln x}{(1+\ln x)^2}\).
Given $(xe)^y = e^x$, taking the natural logarithm of both sides,
we have: $y \ln(xe) = x$ $y(\ln x + \ln e) = x$ $y(\ln x + 1) = x$ $y = \frac{x}{1+\ln x}$
Differentiating with respect to $x$, we have: $\frac{dy}{dx} = \frac{(1+\ln x)(1) - x(\frac{1}{x})}{(1+\ln x)^2} = \frac{1 + \ln x - 1}{(1+\ln x)^2} = \frac{\ln x}{(1+\ln x)^2}$