If \((xe)^y = e^x\), then we need to find \(\frac{dy}{dx}\).
Take the natural logarithm of both sides:
\(\ln((xe)^y) = \ln(e^x)\)
\(y \ln(xe) = x\)
\(y (\ln x + \ln e) = x\)
\(y (\ln x + 1) = x\)
\(y = \frac{x}{1+\ln x}\)
Now, we differentiate with respect to x:
\(\frac{dy}{dx} = \frac{d}{dx}(\frac{x}{1+\ln x})\)
Using the quotient rule: \(\frac{d}{dx} \frac{u}{v} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}\)
\(\frac{dy}{dx} = \frac{(1+\ln x)(1) - x(\frac{1}{x})}{(1+\ln x)^2}\)
\(\frac{dy}{dx} = \frac{1+\ln x - 1}{(1+\ln x)^2}\)
\(\frac{dy}{dx} = \frac{\ln x}{(1+\ln x)^2}\)
Therefore, the correct option is (A) \(\frac{\ln x}{(1+\ln x)^2}\).
List-I (Function) | List-II (Derivative w.r.t. x) | |
---|---|---|
(A) \( \frac{5^x}{\ln 5} \) | (I) \(5^x (\ln 5)^2\) | |
(B) \(\ln 5\) | (II) \(5^x \ln 5\) | |
(C) \(5^x \ln 5\) | (III) \(5^x\) | |
(D) \(5^x\) | (IV) 0 |
List-I | List-II |
---|---|
The derivative of \( \log_e x \) with respect to \( \frac{1}{x} \) at \( x = 5 \) is | (I) -5 |
If \( x^3 + x^2y + xy^2 - 21x = 0 \), then \( \frac{dy}{dx} \) at \( (1, 1) \) is | (II) -6 |
If \( f(x) = x^3 \log_e \frac{1}{x} \), then \( f'(1) + f''(1) \) is | (III) 5 |
If \( y = f(x^2) \) and \( f'(x) = e^{\sqrt{x}} \), then \( \frac{dy}{dx} \) at \( x = 0 \) is | (IV) 0 |