The given equation is:
\(\sin y = x \sin(a + y)\).
Differentiate both sides with respect to \(x\):
\(\cos y \frac{dy}{dx} = \sin(a + y) + x \cos(a + y) \frac{dy}{dx}\).
Rearrange to isolate \(\frac{dy}{dx}\):
\(\frac{dy}{dx} (\cos y - x \cos(a + y)) = \sin(a + y)\).
Simplify:
\(\frac{dy}{dx} = \frac{\sin(a + y)}{\cos y - x \cos(a + y)}\).
From the original equation \(\sin y = x \sin(a + y)\), rewrite \(x\) as:
\(x = \frac{\sin y}{\sin(a + y)}\).
Substitute \(x\) into the denominator:
\(\cos y - x \cos(a + y) = \cos y - \frac{\sin y \cos(a + y)}{\sin(a + y)}\).
Simplify the denominator:
\(\cos y - x \cos(a + y) = \frac{\cos y \sin(a + y) - \sin y \cos(a + y)}{\sin(a + y)} = \frac{\sin a}{\sin(a + y)}\).
Substitute this back into \(\frac{dy}{dx}\):
\(\frac{dy}{dx} = \frac{\sin(a + y)}{\frac{\sin a}{\sin(a + y)}} = \frac{\sin^2(a + y)}{\sin a}\).
Thus:
\(\boxed{\frac{\sin^2(a + y)}{\sin a}}\).
List-I | List-II |
---|---|
The derivative of \( \log_e x \) with respect to \( \frac{1}{x} \) at \( x = 5 \) is | (I) -5 |
If \( x^3 + x^2y + xy^2 - 21x = 0 \), then \( \frac{dy}{dx} \) at \( (1, 1) \) is | (II) -6 |
If \( f(x) = x^3 \log_e \frac{1}{x} \), then \( f'(1) + f''(1) \) is | (III) 5 |
If \( y = f(x^2) \) and \( f'(x) = e^{\sqrt{x}} \), then \( \frac{dy}{dx} \) at \( x = 0 \) is | (IV) 0 |
List-I (Function) | List-II (Derivative w.r.t. x) | |
---|---|---|
(A) \( \frac{5^x}{\ln 5} \) | (I) \(5^x (\ln 5)^2\) | |
(B) \(\ln 5\) | (II) \(5^x \ln 5\) | |
(C) \(5^x \ln 5\) | (III) \(5^x\) | |
(D) \(5^x\) | (IV) 0 |