List-I (Function) | List-II (Derivative w.r.t. x) | |
---|---|---|
(A) \( \frac{5^x}{\ln 5} \) | (I) \(5^x (\ln 5)^2\) | |
(B) \(\ln 5\) | (II) \(5^x \ln 5\) | |
(C) \(5^x \ln 5\) | (III) \(5^x\) | |
(D) \(5^x\) | (IV) 0 |
To match the functions in List-I with their derivatives in List-II, calculate the derivatives:
For (A) \(f(x) = \frac{5^x}{\log_e 5}\):
\(f'(x) = 5^x.\)
Thus, (A) matches with (III).
For (B) \(f(x) = \log_e 5\):
\(f'(x) = 0.\)
Thus, (B) matches with (IV).
For (C) \(f(x) = 5^x \log_e 5\):
\(f'(x) = 5^x \log_e 5.\)
Thus, (C) matches with (II).
For (D) \(f(x) = 5^x\):
\(f'(x) = 5^x (\log_e 5)^2.\)
Thus, (D) matches with (I).
Final Matching: (A) - (III), (B) - (IV), (C) - (II), (D) - (I)
List-I | List-II |
---|---|
The derivative of \( \log_e x \) with respect to \( \frac{1}{x} \) at \( x = 5 \) is | (I) -5 |
If \( x^3 + x^2y + xy^2 - 21x = 0 \), then \( \frac{dy}{dx} \) at \( (1, 1) \) is | (II) -6 |
If \( f(x) = x^3 \log_e \frac{1}{x} \), then \( f'(1) + f''(1) \) is | (III) 5 |
If \( y = f(x^2) \) and \( f'(x) = e^{\sqrt{x}} \), then \( \frac{dy}{dx} \) at \( x = 0 \) is | (IV) 0 |