Question:

Match List-I with List-II:
List-I (Function)List-II (Derivative w.r.t. x)
(A) \( \frac{5^x}{\ln 5} \)(I) \(5^x (\ln 5)^2\)
(B) \(\ln 5\)(II) \(5^x \ln 5\) 
(C) \(5^x \ln 5\)(III) \(5^x\) 
(D) \(5^x\)(IV) 0 

Choose the correct answer from the options given below.

Updated On: Nov 15, 2024
  • (A) - (I), (B) - (II), (C) - (III), (D) - (IV)
  • (A) - (III), (B) - (IV), (C) - (II), (D) - (I)
  • (A) - (I), (B) - (IV), (C) - (II), (D) - (III)
  • (A) - (III), (B) - (II), (C) - (IV), (D) - (I)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

To match the functions in List-I with their derivatives in List-II, calculate the derivatives:

For (A) \(f(x) = \frac{5^x}{\log_e 5}\):

\(f'(x) = 5^x.\)

Thus, (A) matches with (III).

For (B) \(f(x) = \log_e 5\):

\(f'(x) = 0.\)

Thus, (B) matches with (IV).

For (C) \(f(x) = 5^x \log_e 5\):

\(f'(x) = 5^x \log_e 5.\)

Thus, (C) matches with (II).

For (D) \(f(x) = 5^x\):

\(f'(x) = 5^x (\log_e 5)^2.\)

Thus, (D) matches with (I).

Final Matching: (A) - (III), (B) - (IV), (C) - (II), (D) - (I)

Was this answer helpful?
0
0