If \( x, y, z \) \(\text{ are the three cube roots of 27, then the determinant of the matrix}\) \[ \begin{pmatrix} x & y & z \\ y & z & x \\ z & x & y \end{pmatrix} \] \(\text{is:}\)
Step 1: Substitute the values of \( x, y, z \).
Substituting \( x = 3 \), \( y = 3\omega \), and \( z = 3\omega^2 \), we get: \[ \begin{pmatrix} 3 & 3\omega & 3\omega^2 \\ 3\omega & 3\omega^2 & 3 \\ 3\omega^2 & 3 & 3\omega \end{pmatrix} \]
Step 2: Factor out the common factor.
We can factor out 3 from each row: \[ 3^3 \times \begin{pmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{pmatrix} \] The determinant of the remaining matrix is zero because the rows are linearly dependent (since \( \omega \) is a cube root of unity, and the rows are permutations of each other). Thus, the determinant is zero. Thus, the correct answer is \( 0 \), corresponding to option (a).
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( A \) be a \( 3 \times 3 \) real matrix such that \[ A^{2}(A - 2I) - 4(A - I) = O, \] where \( I \) and \( O \) are the identity and null matrices, respectively.
If \[ A^{5} = \alpha A^{2} + \beta A + \gamma I, \] where \( \alpha, \beta, \gamma \) are real constants, then \( \alpha + \beta + \gamma \) is equal to:
Let the matrix $ A = \begin{pmatrix} 1 & 0 & 0 \\1 & 0 & 1 \\0 & 1 & 0 \end{pmatrix} $ satisfy $ A^n = A^{n-2} + A^2 - I $ for $ n \geq 3 $. Then the sum of all the elements of $ A^{50} $ is:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
"In order to be a teacher, one must graduate from college. All poets are poor. Some Mathematicians are poets. No college graduate is poor."
Which of the following is true?