If \( x, y, z \) \(\text{ are the three cube roots of 27, then the determinant of the matrix}\) \[ \begin{pmatrix} x & y & z \\ y & z & x \\ z & x & y \end{pmatrix} \] \(\text{is:}\)
Step 1: Substitute the values of \( x, y, z \).
Substituting \( x = 3 \), \( y = 3\omega \), and \( z = 3\omega^2 \), we get: \[ \begin{pmatrix} 3 & 3\omega & 3\omega^2 \\ 3\omega & 3\omega^2 & 3 \\ 3\omega^2 & 3 & 3\omega \end{pmatrix} \]
Step 2: Factor out the common factor.
We can factor out 3 from each row: \[ 3^3 \times \begin{pmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{pmatrix} \] The determinant of the remaining matrix is zero because the rows are linearly dependent (since \( \omega \) is a cube root of unity, and the rows are permutations of each other). Thus, the determinant is zero. Thus, the correct answer is \( 0 \), corresponding to option (a).
Let the matrix $ A = \begin{pmatrix} 1 & 0 & 0 \\1 & 0 & 1 \\0 & 1 & 0 \end{pmatrix} $ satisfy $ A^n = A^{n-2} + A^2 - I $ for $ n \geq 3 $. Then the sum of all the elements of $ A^{50} $ is:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
A remote island has a unique social structure. Individuals are either "Truth-tellers" (who always speak the truth) or "Tricksters" (who always lie). You encounter three inhabitants: X, Y, and Z.
X says: "Y is a Trickster"
Y says: "Exactly one of us is a Truth-teller."
What can you definitively conclude about Z?
Consider the following statements followed by two conclusions.
Statements: 1. Some men are great. 2. Some men are wise.
Conclusions: 1. Men are either great or wise. 2. Some men are neither great nor wise. Choose the correct option: