If \( x, y, z \) are all different and
\[ \Delta = \begin{vmatrix} x^2 & x^3 + 1 \\ y^2 & y^3 + 1 \\ z^2 & z^3 + 1 \end{vmatrix} = 0, \text{ show that } xyz = -1. \]
Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $