We are given:
\[
(x - iy)^{1/3} = a - ib \Rightarrow x - iy = (a - ib)^3
\]
Compute \( (a - ib)^3 \):
\[
= a^3 - 3a^2 ib + 3a(ib)^2 - (ib)^3
= a^3 - 3a^2 ib - 3ab^2 i^2 + b^3 i^3
\]
\[
= a^3 - 3a^2 ib - 3ab^2(-1) + b^3(-i)
= a^3 + 3ab^2 - i(3a^2b + b^3)
\]
Thus, comparing with \( x - iy \), we get:
\[
x = a^3 + 3ab^2, \quad y = 3a^2b + b^3
\]
Now compute:
\[
\begin{align}
\frac{x}{2a} + \frac{y}{2b}
= \frac{1}{2a}(a^3 + 3ab^2) + \frac{1}{2b}(3a^2b + b^3)
= \frac{a^2 + 3b^2}{2} + \frac{3a^2 + b^2}{2}
= \frac{(a^2 + 3b^2 + 3a^2 + b^2)}{2}
= \frac{4a^2 + 4b^2}{2} = 2(a^2 - b^2)
\]