To solve the integral \( \int_{0}^{5} [x] \, dx \), we break it into intervals where \([x]\) remains constant:
\[
\int_{0}^{1} [x] \, dx = \int_{0}^{1} 0 \, dx = 0, \\
\int_{1}^{2} [x] \, dx = \int_{1}^{2} 1 \, dx = 1, \\
\int_{2}^{3} [x] \, dx = \int_{2}^{3} 2 \, dx = 2, \\
\int_{3}^{4} [x] \, dx = \int_{3}^{4} 3 \, dx = 3, \\
\int_{4}^{5} [x] \, dx = \int_{4}^{5} 4 \, dx = 4.
\]
Adding these up:
\[
0 + 1 + 2 + 3 + 4 = 10.
\]