Question:

If real parts of 512i \sqrt{-5 - 12i} , 5+12i \sqrt{5 + 12i} are positive values, the real part of 86i \sqrt{-8 - 6i} is a negative value. If a+ib=512i+5+12i86i a + ib = \frac{\sqrt{-5 - 12i} + \sqrt{5 + 12i}}{\sqrt{-8 - 6i}} then 2a+b 2a + b is:

Show Hint

To simplify fractions involving complex numbers, multiply numerator and denominator by the conjugate.
Updated On: Apr 13, 2025
  • 3 3
  • 2 2
  • 3 -3
  • 2 -2
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Compute the Roots By finding square roots of complex numbers, we get: 512i=23i,5+12i=3+2i \sqrt{-5 - 12i} = 2 - 3i, \quad \sqrt{5 + 12i} = 3 + 2i 86i=2+i \sqrt{-8 - 6i} = -2 + i Step 2: Compute a+ib a + ib a+ib=(23i)+(3+2i)2+i a + ib = \frac{(2 - 3i) + (3 + 2i)}{-2 + i} =5i2+i = \frac{5 - i}{-2 + i} Simplifying using conjugates, a=1,b=1 a = -1, \quad b = -1 Step 3: Compute 2a+b 2a + b 2(1)+(1)=3 2(-1) + (-1) = -3 Thus, the correct answer is -3.
Was this answer helpful?
1
0

Top Questions on complex numbers

View More Questions