Step 1: Compute the Roots
By finding square roots of complex numbers, we get:
\[
\sqrt{-5 - 12i} = 2 - 3i, \quad \sqrt{5 + 12i} = 3 + 2i
\]
\[
\sqrt{-8 - 6i} = -2 + i
\]
Step 2: Compute \( a + ib \)
\[
a + ib = \frac{(2 - 3i) + (3 + 2i)}{-2 + i}
\]
\[
= \frac{5 - i}{-2 + i}
\]
Simplifying using conjugates,
\[
a = -1, \quad b = -1
\]
Step 3: Compute \( 2a + b \)
\[
2(-1) + (-1) = -3
\]
Thus, the correct answer is -3.