If
\[
X=\begin{bmatrix}x\\y\\z\end{bmatrix}
\]
is a solution of the system of equations $AX=B$, where
\[
\text{adj }A=
\begin{bmatrix}
4 & 2 & 2\\
-5 & 0 & 5\\
1 & -2 & 3
\end{bmatrix}
\quad \text{and} \quad
B=\begin{bmatrix}4\\0\\2\end{bmatrix},
\]
then $|x+y+z|$ is equal to
Show Hint
When adjoint matrix is given, use $X=\dfrac{1}{|A|}(\text{adj }A)B$ and the relation $|\text{adj }A|=|A|^{n-1}$.