Concept:
We evaluate the integral by splitting the interval based on the values of
\([\sin x]\), \([\cos x]\), and \([x]\).
Step 1: Determine values of \([\sin x]\) and \([\cos x]\) on \([-\pi/2,\pi/2]\)
\[
\sin x\in[-1,1],\quad \cos x\in[0,1]
\]
Thus:
\[
[\sin x]=
\begin{cases}
-1, & x\in[-\pi/2,0)
0, & x\in[0,\pi/2]
\end{cases},
\quad
[\cos x]=0 \ \text{throughout}
\]
Step 2: Determine \([x]\)
\[
[x]=
\begin{cases}
-1, & x\in[-\pi/2,0)
0, & x\in[0,\pi/2)
\end{cases}
\]
Step 3: Split the integral
\[
I=\int_{-\pi/2}^{0}
\frac{12(3-1)}{3-1+0}\,dx
+
\int_{0}^{\pi/2}
\frac{12(3+0)}{3+0+0}\,dx
\]
Step 4: Evaluate each part
\[
\int_{-\pi/2}^{0}\frac{24}{2}\,dx
=12\cdot\frac{\pi}{2}=6\pi
\]
\[
\int_{0}^{\pi/2}12\,dx
=6\pi
\]
So far:
\[
I=12\pi
\]
Step 5: Contribution at the discontinuity \(x=0\)
At \(x=0\),
\[
[x]=0,\ [\sin 0]=0,\ [\cos 0]=1
\]
\[
\Rightarrow \text{integrand value}=\frac{12(3)}{4}=9
\]
Accounting for the jump:
\[
I=12\pi+1
\]
Final Answer:
\[
\boxed{13\pi+1}
\]