Step 1: Coordinates of focus
For \(y^2=4ax\), focus is \((a,0)\).
Here \(4a=8\Rightarrow a=2\).
\[
A=(2,0)
\]
Step 2: Let points of intersection be \(B(x_1,y_1)\) and \(C(x_2,y_2)\)
They satisfy:
\[
y=mx+c,\quad y^2=8x
\]
Using centroid formula:
\[
\left(\frac{x_1+x_2+2}{3},\frac{y_1+y_2}{3}\right)=\left(\frac{7}{3},\frac{4}{3}\right)
\]
Thus:
\[
x_1+x_2=5,\quad y_1+y_2=4
\]
Step 3: Distance \(BC\)
\[
(BC)^2=(x_1-x_2)^2+(y_1-y_2)^2
\]
Using identities:
\[
(x_1-x_2)^2=(x_1+x_2)^2-4x_1x_2
\]
\[
(y_1-y_2)^2=(y_1+y_2)^2-4y_1y_2
\]
From parabola relation:
\[
y^2=8x \Rightarrow y_1^2+y_2^2=8(x_1+x_2)=40
\]
Also,
\[
(y_1+y_2)^2=y_1^2+y_2^2+2y_1y_2
\Rightarrow 16=40+2y_1y_2
\Rightarrow y_1y_2=-12
\]
Similarly,
\[
x_1x_2=\frac{y_1^2y_2^2}{64}=\frac{144}{64}=\frac{9}{4}
\]
Step 4: Compute \((BC)^2\)
\[
(BC)^2=(25-9)+(16-4(-12))=16+16=32
\]
Final Answer:
\[
\boxed{32}
\]