Step 1: Evaluate the limit defining \( f(x) \)
As \( \theta \to 0 \),
\[
x^{\theta/2} \to 1 \quad (\text{for } x > 0)
\]
Hence, for \( x \neq 1 \),
\[
f(x)=\frac{\cos(\pi x)\sin(x-1)}{1+(x-1)}
=\frac{\cos(\pi x)\sin(x-1)}{x}
\]
Step 2: Continuity at \( x=1 \)
Compute:
\[
\lim_{x\to 1} f(x)
=\lim_{x\to 1}\frac{\cos(\pi x)\sin(x-1)}{x}
\]
Since \( \sin(x-1)\sim (x-1) \) and \( \cos(\pi)=-1 \),
\[
\lim_{x\to 1} f(x)=\frac{-1\cdot 0}{1}=0
\]
Also,
\[
f(1)=\lim_{\theta\to 0}\frac{\cos(\pi-\theta)\sin 0}{1+1^{\theta/2}(0)}=0
\]
Thus,
\[
\lim_{x\to 1} f(x)=f(1)
\Rightarrow f(x)\text{ is continuous at }x=1
\]
\[
\Rightarrow \text{Statement (I) is true.}
\]
Step 3: Continuity at \( x=-1 \)
For \( x=-1 \), the term \( x^{\theta/2} \) is not well-defined for real values as \( \theta\to 0 \),
and hence the limit defining \( f(x) \) does not exist in the real sense.
Thus, continuity at \( x=-1 \) fails.
\[
\Rightarrow \text{Statement (II) is false.}
\]
Final Conclusion:
\[
\boxed{\text{Only (I) is true}}
\]