If $x^2 + y^2 = 25$ and $xy = 12$, what is $x + y$?
11
- Step 1: Recall algebraic identity - \[ (x+y)^2 = x^2 + y^2 + 2xy \]
- Step 2: Substitute known values - Given $x^2 + y^2 = 25$, $xy = 12$: \[ (x+y)^2 = 25 + 2 \times 12 = 25 + 24 = 49 \]
- Step 3: Take square root - \[ x+y = \pm \sqrt{49} = \pm 7 \]
- Step 4: Choose sign based on context - Usually, if no restriction is given, we take the positive root: $x + y = 7$.
- Step 5: Conclusion - $x + y = 7$, matching option (2).
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: