Question:

If $x^2 + y^2 = 25$ and $xy = 12$, what is $x + y$? 
 

Show Hint

When $x^2+y^2$ and $xy$ are known, use $(x+y)^2 = x^2 + y^2 + 2xy$ to find $x+y$ directly.
Updated On: Aug 1, 2025
  • 5
  • 7
  • 9
  • 11 
     

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation


- Step 1: Recall algebraic identity - \[ (x+y)^2 = x^2 + y^2 + 2xy \] 
- Step 2: Substitute known values - Given $x^2 + y^2 = 25$, $xy = 12$: \[ (x+y)^2 = 25 + 2 \times 12 = 25 + 24 = 49 \] 
- Step 3: Take square root - \[ x+y = \pm \sqrt{49} = \pm 7 \] 
- Step 4: Choose sign based on context - Usually, if no restriction is given, we take the positive root: $x + y = 7$. 
- Step 5: Conclusion - $x + y = 7$, matching option (2). 
 

Was this answer helpful?
0
0