Given that $\vec{a}$ and $\vec{b}$ are unit vectors:
\[
|\vec{a}| = |\vec{b}| = 1, | \vec{a} + \vec{b} | = 1.
\]
Now,
\[
| \vec{a} + \vec{b} |^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b})
= |\vec{a}|^2 + |\vec{b}|^2 + 2\, \vec{a} \cdot \vec{b}.
\]
So,
\[
1 = 1 + 1 + 2 (\cos\theta) \implies 1 = 2 + 2\cos\theta.
\]
Therefore,
\[
2\cos\theta = -1 \implies \cos\theta = -\frac{1}{2}.
\]
So,
\[
\theta = \cos^{-1}\Big(-\frac{1}{2}\Big) = \frac{2\pi}{3}.
\]