Let \(\mathbf{a} = 4\mathbf{i} - \mathbf{j} + 2\mathbf{k}\) and \(\mathbf{b} = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k}\).
We know that \(\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\).
\[\mathbf{a} \cdot \mathbf{b} = (4)(1) + (-1)(3) + (2)(-2) = 4 - 3 - 4 = -3\]
\[|\mathbf{a}| = \sqrt{4^2 + (-1)^2 + 2^2} = \sqrt{16 + 1 + 4} = \sqrt{21}\]
\[|\mathbf{b}| = \sqrt{1^2 + 3^2 + (-2)^2} = \sqrt{1 + 9 + 4} = \sqrt{14}\]
\[\cos \theta = \frac{-3}{\sqrt{21}\sqrt{14}} = \frac{-3}{\sqrt{294}} = \frac{-3}{\sqrt{49 \times 6}} = \frac{-3}{7\sqrt{6}}\]
We need to find \(\sin 2\theta = 2\sin \theta \cos \theta\).
We know \(\cos \theta = \frac{-3}{7\sqrt{6}}\).
We have \(\sin^2 \theta = 1 - \cos^2 \theta = 1 - \left(\frac{-3}{7\sqrt{6}}\right)^2 = 1 - \frac{9}{49 \times 6} = 1 - \frac{3}{98} = \frac{98-3}{98} = \frac{95}{98}\).
Therefore, \(\sin \theta = \pm \sqrt{\frac{95}{98}} = \pm \frac{\sqrt{95}}{7\sqrt{2}}\).
\[\sin 2\theta = 2\sin \theta \cos \theta = 2\left(\pm \frac{\sqrt{95}}{7\sqrt{2}}\right)\left(\frac{-3}{7\sqrt{6}}\right) = \mp \frac{6\sqrt{95}}{49\sqrt{12}} = \mp \frac{6\sqrt{95}}{49 \times 2\sqrt{3}} = \mp \frac{3\sqrt{95}}{49\sqrt{3}}\]
\[\sin 2\theta = \mp \frac{3\sqrt{95}\sqrt{3}}{49 \times 3} = \mp \frac{\sqrt{285}}{49}\]
Since \(\cos \theta = \frac{-3}{7\sqrt{6}}<0\), \(\theta\) is in the second quadrant.
If \(\theta\) is in the second quadrant, \(2\theta\) can be in the first or second quadrant.
Since \(\sin 2\theta = \mp \frac{\sqrt{285}}{49}\), we must determine the sign.
We have \(\cos \theta = \frac{-3}{7\sqrt{6}}\).
Since \(\cos \theta<0\), \(\theta\) is in the second quadrant.
Thus, \(\frac{\pi}{2}<\theta<\pi\), which implies \(\pi<2\theta<2\pi\).
Therefore, \(2\theta\) is in the third or fourth quadrant.
Since \(\sin 2\theta\) is negative in the third and fourth quadrants, \(\sin 2\theta = -\frac{\sqrt{285}}{49}\).
Final Answer: The final answer is $\boxed{(3)}$