For the first member of the Lyman series:
\[ \frac{1}{\lambda} = \frac{13.6 \, z^2}{hc} \left[ \frac{1}{1^2} - \frac{1}{2^2} \right] \quad \dots \text{(i)} \]
For the second member of the Lyman series:
\[ \frac{1}{\lambda'} = \frac{13.6 \, z^2}{hc} \left[ \frac{1}{1^2} - \frac{1}{3^2} \right] \quad \dots \text{(ii)} \]
Dividing equation (i) by (ii):
\[ \lambda' = \frac{27}{32} \lambda \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: