Step 1: Volume of a parallelepiped is given by the scalar triple product:
$\text{Volume} = |\vec{a} \cdot (\vec{b} \times \vec{c})|$
Step 2: Suppose the vectors defining the parallelepiped are:
$\vec{a} = \langle a_1, a_2, a_3 \rangle$
$\vec{b} = \langle b_1, b_2, b_3 \rangle$
$\vec{c} = \langle c_1, c_2, c_3 \rangle$
Step 3: Compute the cross product:
$\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ \end{vmatrix}$
Step 4: Compute the scalar triple product:
$\vec{a} \cdot (\vec{b} \times \vec{c})$
Step 5: The result of this scalar product is a scalar value, which gives the volume of the parallelepiped.
Step 6: In the given problem, after performing the required calculations, we find:
$\text{Volume} = 81$
Final Answer: (C): 81 cu. units
Let \( V_1 \) be the volume of the parallelopiped with coterminous edges \( \mathbf{a} \times \mathbf{b}, \mathbf{b} \times \mathbf{c}, \) and \( \mathbf{c} \times \mathbf{a} \). We are given that \( V_1 = [ \mathbf{a} \times \mathbf{b} \ \ \mathbf{b} \times \mathbf{c} \ \ \mathbf{c} \times \mathbf{a} ] = 9 \) cu. units.
We know that \( [ \mathbf{a} \times \mathbf{b} \ \ \mathbf{b} \times \mathbf{c} \ \ \mathbf{c} \times \mathbf{a} ] = (\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}))^2 = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^2 \). Therefore, \( [\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^2 = 9 \), which implies \( [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = \pm 3 \).
Now, let \( V_2 \) be the volume of the parallelopiped with coterminous edges \( (\mathbf{a} \times \mathbf{b}) \times (\mathbf{b} \times \mathbf{c}), (\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a}), \) and \( (\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b}) \). We need to find \( V_2 = [ (\mathbf{a} \times \mathbf{b}) \times (\mathbf{b} \times \mathbf{c}) \ \ (\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a}) \ \ (\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b}) ] \).
Using the vector triple product formula \( \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \), we have:
\( (\mathbf{a} \times \mathbf{b}) \times (\mathbf{b} \times \mathbf{c}) = [(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}] \mathbf{b} - [(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b}] \mathbf{c} = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] \mathbf{b} - 0 \mathbf{c} = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] \mathbf{b} \)
Similarly,
\( (\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a}) = [\mathbf{b} \ \mathbf{c} \ \mathbf{a}] \mathbf{c} = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] \mathbf{c} \)
\( (\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b}) = [\mathbf{c} \ \mathbf{a} \ \mathbf{b}] \mathbf{a} = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] \mathbf{a} \)
So,
\( V_2 = [ [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] \mathbf{b} \ \ [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] \mathbf{c} \ \ [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] \mathbf{a} ] = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^3 [\mathbf{b} \ \mathbf{c} \ \mathbf{a}] = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^3 [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^4 \)
Since \( [\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^2 = 9 \), we have \( [\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^4 = 9^2 = 81 \)
Therefore, the volume of the parallelopiped with \( (\mathbf{a} \times \mathbf{b}) \times (\mathbf{b} \times \mathbf{c}), (\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a}), \) and \( (\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b}) \) as coterminous edges is 81 cubic units.
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
A vector is an object which has both magnitudes and direction. It is usually represented by an arrow which shows the direction(→) and its length shows the magnitude. The arrow which indicates the vector has an arrowhead and its opposite end is the tail. It is denoted as
The magnitude of the vector is represented as |V|. Two vectors are said to be equal if they have equal magnitudes and equal direction.
Arithmetic operations such as addition, subtraction, multiplication on vectors. However, in the case of multiplication, vectors have two terminologies, such as dot product and cross product.