If the uncertainty in velocity and position of a minute particle in space are, \(2.4 × 10^{–26}\) \((m s^{–1)}\) and \(10^{–7} (m)\), respectively. The mass of the particle in g is _____ . (Nearest integer)
(Given : \(h = 6.626 × 10^{–34} Js\))
\(Δv = 2.4 \times 10-26 \ ms^{-1}\)
\(Δx = 10^{-7} m\)
By uncertainty principle,
\(∴ m ≥ \frac {h}{4\pi(Δx)(Δv)}\)
\(m≥ \frac {6.626 \times 10^{-34}}{4\times 3.14 \times (10^{-7})(2.4)\times 10^{-26}}\)
\(m≥ \frac {6.626 \times 10^{-1}}{4 \times 2.4\times3.14}\)
\(m≥ 0.02198\ kg\)
\(m≥ 21.98\ g\)
So, the mass of the particle \(≃ 22\ g\)
S.No | Prefixes | Multiples |
(i) | micro | 106 |
(ii) | deca | 109 |
(iii) | mega | 10–6 |
(iv) | giga | 10–15 |
(v) | femto | 10 |
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.
Which of the following options is correct?
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
Read More: Uncertainty in Measurement