If the uncertainty in velocity and position of a minute particle in space are, \(2.4 × 10^{–26}\) \((m s^{–1)}\) and \(10^{–7} (m)\), respectively. The mass of the particle in g is _____ . (Nearest integer)
(Given : \(h = 6.626 × 10^{–34} Js\))
S.No | Prefixes | Multiples |
(i) | micro | 106 |
(ii) | deca | 109 |
(iii) | mega | 10–6 |
(iv) | giga | 10–15 |
(v) | femto | 10 |
The output (Y) of the given logic gate is similar to the output of an/a :
A | B | Y |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 1 |
1 | 1 | 0 |
List I (Spectral Lines of Hydrogen for transitions from) | List II (Wavelength (nm)) | ||
A. | n2 = 3 to n1 = 2 | I. | 410.2 |
B. | n2 = 4 to n1 = 2 | II. | 434.1 |
C. | n2 = 5 to n1 = 2 | III. | 656.3 |
D. | n2 = 6 to n1 = 2 | IV. | 486.1 |
Read More: Uncertainty in Measurement