If the two metals $A$ and $B$ are exposed to radiation of wavelength $350 mm$. The work functions of metals $A$ and $B$ are $4.8 eV$ and $2.2 eV$. Then choose the correct option
In Bohr model of hydrogen atom, if the difference between the radii of \( n^{th} \) and\( (n+1)^{th} \)orbits is equal to the radius of the \( (n-1)^{th} \) orbit, then the value of \( n \) is:
Given three identical bags each containing 10 balls, whose colours are as follows:
Bag I | 3 Red | 2 Blue | 5 Green |
Bag II | 4 Red | 3 Blue | 3 Green |
Bag III | 5 Red | 1 Blue | 4 Green |
A person chooses a bag at random and takes out a ball. If the ball is Red, the probability that it is from Bag I is $ p $ and if the ball is Green, the probability that it is from Bag III is $ q $, then the value of $ \frac{1}{p} + \frac{1}{q} $ is:
If the system of equation $$ 2x + \lambda y + 3z = 5 \\3x + 2y - z = 7 \\4x + 5y + \mu z = 9 $$ has infinitely many solutions, then $ \lambda^2 + \mu^2 $ is equal to:
All matter we encounter in everyday life consists of smallest units called atoms – the air we breath consists of a wildly careening crowd of little groups of atoms, my computer’s keyboard of a tangle of atom chains, the metal surface it rests on is a crystal lattice of atoms. All the variety of matter consists of less than hundred species of atoms (in other words: less than a hundred different chemical elements).
Every atom consists of an nucleus surrounded by a cloud of electrons. Nearly all of the atom’s mass is concentrated in its nucleus, while the structure of the electron cloud determines how the atom can bind to other atoms (in other words: its chemical properties). Every chemical element can be defined via a characteristic number of protons in its nucleus. Atoms that have lost some of their usual number of electrons are called ions. Atoms are extremely small (typical diameters are in the region of tenths of a billionth of a metre = 10-10 metres), and to describe their properties and behaviour, one has to resort to quantum theory.